You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
698 lines
25 KiB
698 lines
25 KiB
"""Code used for this implementation of the MAT helper utils is modified from |
|
lama-cleaner, copyright of Sanster: https://github.com/fenglinglwb/MAT""" |
|
|
|
import collections |
|
from itertools import repeat |
|
from typing import Any |
|
|
|
import numpy as np |
|
import torch |
|
from torch import conv2d, conv_transpose2d |
|
|
|
|
|
def normalize_2nd_moment(x, dim=1, eps=1e-8): |
|
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() |
|
|
|
|
|
class EasyDict(dict): |
|
"""Convenience class that behaves like a dict but allows access with the attribute syntax.""" |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
try: |
|
return self[name] |
|
except KeyError: |
|
raise AttributeError(name) |
|
|
|
def __setattr__(self, name: str, value: Any) -> None: |
|
self[name] = value |
|
|
|
def __delattr__(self, name: str) -> None: |
|
del self[name] |
|
|
|
|
|
activation_funcs = { |
|
"linear": EasyDict( |
|
func=lambda x, **_: x, |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=1, |
|
ref="", |
|
has_2nd_grad=False, |
|
), |
|
"relu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.relu(x), |
|
def_alpha=0, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=2, |
|
ref="y", |
|
has_2nd_grad=False, |
|
), |
|
"lrelu": EasyDict( |
|
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), |
|
def_alpha=0.2, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=3, |
|
ref="y", |
|
has_2nd_grad=False, |
|
), |
|
"tanh": EasyDict( |
|
func=lambda x, **_: torch.tanh(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=4, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"sigmoid": EasyDict( |
|
func=lambda x, **_: torch.sigmoid(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=5, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"elu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.elu(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=6, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"selu": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.selu(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=7, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"softplus": EasyDict( |
|
func=lambda x, **_: torch.nn.functional.softplus(x), |
|
def_alpha=0, |
|
def_gain=1, |
|
cuda_idx=8, |
|
ref="y", |
|
has_2nd_grad=True, |
|
), |
|
"swish": EasyDict( |
|
func=lambda x, **_: torch.sigmoid(x) * x, |
|
def_alpha=0, |
|
def_gain=np.sqrt(2), |
|
cuda_idx=9, |
|
ref="x", |
|
has_2nd_grad=True, |
|
), |
|
} |
|
|
|
|
|
def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None): |
|
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.""" |
|
assert isinstance(x, torch.Tensor) |
|
assert clamp is None or clamp >= 0 |
|
spec = activation_funcs[act] |
|
alpha = float(alpha if alpha is not None else spec.def_alpha) |
|
gain = float(gain if gain is not None else spec.def_gain) |
|
clamp = float(clamp if clamp is not None else -1) |
|
|
|
# Add bias. |
|
if b is not None: |
|
assert isinstance(b, torch.Tensor) and b.ndim == 1 |
|
assert 0 <= dim < x.ndim |
|
assert b.shape[0] == x.shape[dim] |
|
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]).to(x.device) |
|
|
|
# Evaluate activation function. |
|
alpha = float(alpha) |
|
x = spec.func(x, alpha=alpha) |
|
|
|
# Scale by gain. |
|
gain = float(gain) |
|
if gain != 1: |
|
x = x * gain |
|
|
|
# Clamp. |
|
if clamp >= 0: |
|
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type |
|
return x |
|
|
|
|
|
def bias_act( |
|
x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref" |
|
): |
|
r"""Fused bias and activation function. |
|
Adds bias `b` to activation tensor `x`, evaluates activation function `act`, |
|
and scales the result by `gain`. Each of the steps is optional. In most cases, |
|
the fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports first and second order gradients, |
|
but not third order gradients. |
|
Args: |
|
x: Input activation tensor. Can be of any shape. |
|
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type |
|
as `x`. The shape must be known, and it must match the dimension of `x` |
|
corresponding to `dim`. |
|
dim: The dimension in `x` corresponding to the elements of `b`. |
|
The value of `dim` is ignored if `b` is not specified. |
|
act: Name of the activation function to evaluate, or `"linear"` to disable. |
|
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. |
|
See `activation_funcs` for a full list. `None` is not allowed. |
|
alpha: Shape parameter for the activation function, or `None` to use the default. |
|
gain: Scaling factor for the output tensor, or `None` to use default. |
|
See `activation_funcs` for the default scaling of each activation function. |
|
If unsure, consider specifying 1. |
|
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable |
|
the clamping (default). |
|
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). |
|
Returns: |
|
Tensor of the same shape and datatype as `x`. |
|
""" |
|
assert isinstance(x, torch.Tensor) |
|
assert impl in ["ref", "cuda"] |
|
return _bias_act_ref( |
|
x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp |
|
) |
|
|
|
|
|
def setup_filter( |
|
f, |
|
device=torch.device("cpu"), |
|
normalize=True, |
|
flip_filter=False, |
|
gain=1, |
|
separable=None, |
|
): |
|
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`. |
|
Args: |
|
f: Torch tensor, numpy array, or python list of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), |
|
`[]` (impulse), or |
|
`None` (identity). |
|
device: Result device (default: cpu). |
|
normalize: Normalize the filter so that it retains the magnitude |
|
for constant input signal (DC)? (default: True). |
|
flip_filter: Flip the filter? (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
separable: Return a separable filter? (default: select automatically). |
|
Returns: |
|
Float32 tensor of the shape |
|
`[filter_height, filter_width]` (non-separable) or |
|
`[filter_taps]` (separable). |
|
""" |
|
# Validate. |
|
if f is None: |
|
f = 1 |
|
f = torch.as_tensor(f, dtype=torch.float32) |
|
assert f.ndim in [0, 1, 2] |
|
assert f.numel() > 0 |
|
if f.ndim == 0: |
|
f = f[np.newaxis] |
|
|
|
# Separable? |
|
if separable is None: |
|
separable = f.ndim == 1 and f.numel() >= 8 |
|
if f.ndim == 1 and not separable: |
|
f = f.ger(f) |
|
assert f.ndim == (1 if separable else 2) |
|
|
|
# Apply normalize, flip, gain, and device. |
|
if normalize: |
|
f /= f.sum() |
|
if flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
f = f * (gain ** (f.ndim / 2)) |
|
f = f.to(device=device) |
|
return f |
|
|
|
|
|
def _get_filter_size(f): |
|
if f is None: |
|
return 1, 1 |
|
|
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
fw = f.shape[-1] |
|
fh = f.shape[0] |
|
|
|
fw = int(fw) |
|
fh = int(fh) |
|
assert fw >= 1 and fh >= 1 |
|
return fw, fh |
|
|
|
|
|
def _get_weight_shape(w): |
|
shape = [int(sz) for sz in w.shape] |
|
return shape |
|
|
|
|
|
def _parse_scaling(scaling): |
|
if isinstance(scaling, int): |
|
scaling = [scaling, scaling] |
|
assert isinstance(scaling, (list, tuple)) |
|
assert all(isinstance(x, int) for x in scaling) |
|
sx, sy = scaling |
|
assert sx >= 1 and sy >= 1 |
|
return sx, sy |
|
|
|
|
|
def _parse_padding(padding): |
|
if isinstance(padding, int): |
|
padding = [padding, padding] |
|
assert isinstance(padding, (list, tuple)) |
|
assert all(isinstance(x, int) for x in padding) |
|
if len(padding) == 2: |
|
padx, pady = padding |
|
padding = [padx, padx, pady, pady] |
|
padx0, padx1, pady0, pady1 = padding |
|
return padx0, padx1, pady0, pady1 |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
|
|
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): |
|
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.""" |
|
# Validate arguments. |
|
assert isinstance(x, torch.Tensor) and x.ndim == 4 |
|
if f is None: |
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
assert f.dtype == torch.float32 and not f.requires_grad |
|
batch_size, num_channels, in_height, in_width = x.shape |
|
# upx, upy = _parse_scaling(up) |
|
# downx, downy = _parse_scaling(down) |
|
|
|
upx, upy = up, up |
|
downx, downy = down, down |
|
|
|
# padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
padx0, padx1, pady0, pady1 = padding[0], padding[1], padding[2], padding[3] |
|
|
|
# Upsample by inserting zeros. |
|
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) |
|
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) |
|
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) |
|
|
|
# Pad or crop. |
|
x = torch.nn.functional.pad( |
|
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)] |
|
) |
|
x = x[ |
|
:, |
|
:, |
|
max(-pady0, 0) : x.shape[2] - max(-pady1, 0), |
|
max(-padx0, 0) : x.shape[3] - max(-padx1, 0), |
|
] |
|
|
|
# Setup filter. |
|
f = f * (gain ** (f.ndim / 2)) |
|
f = f.to(x.dtype) |
|
if not flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
|
|
# Convolve with the filter. |
|
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) |
|
if f.ndim == 4: |
|
x = conv2d(input=x, weight=f, groups=num_channels) |
|
else: |
|
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) |
|
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) |
|
|
|
# Downsample by throwing away pixels. |
|
x = x[:, :, ::downy, ::downx] |
|
return x |
|
|
|
|
|
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"): |
|
r"""Pad, upsample, filter, and downsample a batch of 2D images. |
|
Performs the following sequence of operations for each channel: |
|
1. Upsample the image by inserting N-1 zeros after each pixel (`up`). |
|
2. Pad the image with the specified number of zeros on each side (`padding`). |
|
Negative padding corresponds to cropping the image. |
|
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it |
|
so that the footprint of all output pixels lies within the input image. |
|
4. Downsample the image by keeping every Nth pixel (`down`). |
|
This sequence of operations bears close resemblance to scipy.signal.upfirdn(). |
|
The fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports gradients of arbitrary order. |
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
down: Integer downsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
# assert isinstance(x, torch.Tensor) |
|
# assert impl in ['ref', 'cuda'] |
|
return _upfirdn2d_ref( |
|
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain |
|
) |
|
|
|
|
|
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"): |
|
r"""Upsample a batch of 2D images using the given 2D FIR filter. |
|
By default, the result is padded so that its shape is a multiple of the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the output. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
upx, upy = _parse_scaling(up) |
|
# upx, upy = up, up |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
# padx0, padx1, pady0, pady1 = padding, padding, padding, padding |
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + (fw + upx - 1) // 2, |
|
padx1 + (fw - upx) // 2, |
|
pady0 + (fh + upy - 1) // 2, |
|
pady1 + (fh - upy) // 2, |
|
] |
|
return upfirdn2d( |
|
x, |
|
f, |
|
up=up, |
|
padding=p, |
|
flip_filter=flip_filter, |
|
gain=gain * upx * upy, |
|
impl=impl, |
|
) |
|
|
|
|
|
class FullyConnectedLayer(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_features, # Number of input features. |
|
out_features, # Number of output features. |
|
bias=True, # Apply additive bias before the activation function? |
|
activation="linear", # Activation function: 'relu', 'lrelu', etc. |
|
lr_multiplier=1, # Learning rate multiplier. |
|
bias_init=0, # Initial value for the additive bias. |
|
): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter( |
|
torch.randn([out_features, in_features]) / lr_multiplier |
|
) |
|
self.bias = ( |
|
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) |
|
if bias |
|
else None |
|
) |
|
self.activation = activation |
|
|
|
self.weight_gain = lr_multiplier / np.sqrt(in_features) |
|
self.bias_gain = lr_multiplier |
|
|
|
def forward(self, x): |
|
w = self.weight * self.weight_gain |
|
b = self.bias |
|
if b is not None and self.bias_gain != 1: |
|
b = b * self.bias_gain |
|
|
|
if self.activation == "linear" and b is not None: |
|
# out = torch.addmm(b.unsqueeze(0), x, w.t()) |
|
x = x.matmul(w.t().to(x.device)) |
|
out = x + b.reshape( |
|
[-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)] |
|
).to(x.device) |
|
else: |
|
x = x.matmul(w.t().to(x.device)) |
|
out = bias_act(x, b, act=self.activation, dim=x.ndim - 1).to(x.device) |
|
return out |
|
|
|
|
|
def _conv2d_wrapper( |
|
x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True |
|
): |
|
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.""" |
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
|
|
# Flip weight if requested. |
|
if ( |
|
not flip_weight |
|
): # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False). |
|
w = w.flip([2, 3]) |
|
|
|
# Workaround performance pitfall in cuDNN 8.0.5, triggered when using |
|
# 1x1 kernel + memory_format=channels_last + less than 64 channels. |
|
if ( |
|
kw == 1 |
|
and kh == 1 |
|
and stride == 1 |
|
and padding in [0, [0, 0], (0, 0)] |
|
and not transpose |
|
): |
|
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64: |
|
if out_channels <= 4 and groups == 1: |
|
in_shape = x.shape |
|
x = w.squeeze(3).squeeze(2) @ x.reshape( |
|
[in_shape[0], in_channels_per_group, -1] |
|
) |
|
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]]) |
|
else: |
|
x = x.to(memory_format=torch.contiguous_format) |
|
w = w.to(memory_format=torch.contiguous_format) |
|
x = conv2d(x, w, groups=groups) |
|
return x.to(memory_format=torch.channels_last) |
|
|
|
# Otherwise => execute using conv2d_gradfix. |
|
op = conv_transpose2d if transpose else conv2d |
|
return op(x, w, stride=stride, padding=padding, groups=groups) |
|
|
|
|
|
def conv2d_resample( |
|
x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False |
|
): |
|
r"""2D convolution with optional up/downsampling. |
|
Padding is performed only once at the beginning, not between the operations. |
|
Args: |
|
x: Input tensor of shape |
|
`[batch_size, in_channels, in_height, in_width]`. |
|
w: Weight tensor of shape |
|
`[out_channels, in_channels//groups, kernel_height, kernel_width]`. |
|
f: Low-pass filter for up/downsampling. Must be prepared beforehand by |
|
calling setup_filter(). None = identity (default). |
|
up: Integer upsampling factor (default: 1). |
|
down: Integer downsampling factor (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
groups: Split input channels into N groups (default: 1). |
|
flip_weight: False = convolution, True = correlation (default: True). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
# Validate arguments. |
|
assert isinstance(x, torch.Tensor) and (x.ndim == 4) |
|
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype) |
|
assert f is None or ( |
|
isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32 |
|
) |
|
assert isinstance(up, int) and (up >= 1) |
|
assert isinstance(down, int) and (down >= 1) |
|
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}" |
|
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) |
|
fw, fh = _get_filter_size(f) |
|
# px0, px1, py0, py1 = _parse_padding(padding) |
|
px0, px1, py0, py1 = padding, padding, padding, padding |
|
|
|
# Adjust padding to account for up/downsampling. |
|
if up > 1: |
|
px0 += (fw + up - 1) // 2 |
|
px1 += (fw - up) // 2 |
|
py0 += (fh + up - 1) // 2 |
|
py1 += (fh - up) // 2 |
|
if down > 1: |
|
px0 += (fw - down + 1) // 2 |
|
px1 += (fw - down) // 2 |
|
py0 += (fh - down + 1) // 2 |
|
py1 += (fh - down) // 2 |
|
|
|
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve. |
|
if kw == 1 and kh == 1 and (down > 1 and up == 1): |
|
x = upfirdn2d( |
|
x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter |
|
) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
return x |
|
|
|
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample. |
|
if kw == 1 and kh == 1 and (up > 1 and down == 1): |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
x = upfirdn2d( |
|
x=x, |
|
f=f, |
|
up=up, |
|
padding=[px0, px1, py0, py1], |
|
gain=up**2, |
|
flip_filter=flip_filter, |
|
) |
|
return x |
|
|
|
# Fast path: downsampling only => use strided convolution. |
|
if down > 1 and up == 1: |
|
x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter) |
|
x = _conv2d_wrapper( |
|
x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight |
|
) |
|
return x |
|
|
|
# Fast path: upsampling with optional downsampling => use transpose strided convolution. |
|
if up > 1: |
|
if groups == 1: |
|
w = w.transpose(0, 1) |
|
else: |
|
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw) |
|
w = w.transpose(1, 2) |
|
w = w.reshape( |
|
groups * in_channels_per_group, out_channels // groups, kh, kw |
|
) |
|
px0 -= kw - 1 |
|
px1 -= kw - up |
|
py0 -= kh - 1 |
|
py1 -= kh - up |
|
pxt = max(min(-px0, -px1), 0) |
|
pyt = max(min(-py0, -py1), 0) |
|
x = _conv2d_wrapper( |
|
x=x, |
|
w=w, |
|
stride=up, |
|
padding=[pyt, pxt], |
|
groups=groups, |
|
transpose=True, |
|
flip_weight=(not flip_weight), |
|
) |
|
x = upfirdn2d( |
|
x=x, |
|
f=f, |
|
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt], |
|
gain=up**2, |
|
flip_filter=flip_filter, |
|
) |
|
if down > 1: |
|
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) |
|
return x |
|
|
|
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d. |
|
if up == 1 and down == 1: |
|
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0: |
|
return _conv2d_wrapper( |
|
x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight |
|
) |
|
|
|
# Fallback: Generic reference implementation. |
|
x = upfirdn2d( |
|
x=x, |
|
f=(f if up > 1 else None), |
|
up=up, |
|
padding=[px0, px1, py0, py1], |
|
gain=up**2, |
|
flip_filter=flip_filter, |
|
) |
|
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) |
|
if down > 1: |
|
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) |
|
return x |
|
|
|
|
|
class Conv2dLayer(torch.nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, # Number of input channels. |
|
out_channels, # Number of output channels. |
|
kernel_size, # Width and height of the convolution kernel. |
|
bias=True, # Apply additive bias before the activation function? |
|
activation="linear", # Activation function: 'relu', 'lrelu', etc. |
|
up=1, # Integer upsampling factor. |
|
down=1, # Integer downsampling factor. |
|
resample_filter=[ |
|
1, |
|
3, |
|
3, |
|
1, |
|
], # Low-pass filter to apply when resampling activations. |
|
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. |
|
channels_last=False, # Expect the input to have memory_format=channels_last? |
|
trainable=True, # Update the weights of this layer during training? |
|
): |
|
super().__init__() |
|
self.activation = activation |
|
self.up = up |
|
self.down = down |
|
self.register_buffer("resample_filter", setup_filter(resample_filter)) |
|
self.conv_clamp = conv_clamp |
|
self.padding = kernel_size // 2 |
|
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) |
|
self.act_gain = activation_funcs[activation].def_gain |
|
|
|
memory_format = ( |
|
torch.channels_last if channels_last else torch.contiguous_format |
|
) |
|
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to( |
|
memory_format=memory_format |
|
) |
|
bias = torch.zeros([out_channels]) if bias else None |
|
if trainable: |
|
self.weight = torch.nn.Parameter(weight) |
|
self.bias = torch.nn.Parameter(bias) if bias is not None else None |
|
else: |
|
self.register_buffer("weight", weight) |
|
if bias is not None: |
|
self.register_buffer("bias", bias) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, x, gain=1): |
|
w = self.weight * self.weight_gain |
|
x = conv2d_resample( |
|
x=x, |
|
w=w, |
|
f=self.resample_filter, |
|
up=self.up, |
|
down=self.down, |
|
padding=self.padding, |
|
) |
|
|
|
act_gain = self.act_gain * gain |
|
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None |
|
out = bias_act( |
|
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp |
|
) |
|
return out
|
|
|