You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.3 KiB
158 lines
4.3 KiB
model: |
|
base_learning_rate: 5.0e-05 |
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion |
|
params: |
|
linear_start: 0.00085 |
|
linear_end: 0.0120 |
|
num_timesteps_cond: 1 |
|
log_every_t: 200 |
|
timesteps: 1000 |
|
first_stage_key: "jpg" |
|
cond_stage_key: "txt" |
|
image_size: 64 |
|
channels: 4 |
|
cond_stage_trainable: false |
|
conditioning_key: hybrid |
|
scale_factor: 0.18215 |
|
monitor: val/loss_simple_ema |
|
finetune_keys: null |
|
use_ema: False |
|
|
|
unet_config: |
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel |
|
params: |
|
use_checkpoint: True |
|
image_size: 32 # unused |
|
in_channels: 9 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [ 4, 2, 1 ] |
|
num_res_blocks: 2 |
|
channel_mult: [ 1, 2, 4, 4 ] |
|
num_head_channels: 64 # need to fix for flash-attn |
|
use_spatial_transformer: True |
|
use_linear_in_transformer: True |
|
transformer_depth: 1 |
|
context_dim: 1024 |
|
legacy: False |
|
|
|
first_stage_config: |
|
target: ldm.models.autoencoder.AutoencoderKL |
|
params: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
#attn_type: "vanilla-xformers" |
|
double_z: true |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: |
|
- 1 |
|
- 2 |
|
- 4 |
|
- 4 |
|
num_res_blocks: 2 |
|
attn_resolutions: [ ] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
cond_stage_config: |
|
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder |
|
params: |
|
freeze: True |
|
layer: "penultimate" |
|
|
|
|
|
data: |
|
target: ldm.data.laion.WebDataModuleFromConfig |
|
params: |
|
tar_base: null # for concat as in LAION-A |
|
p_unsafe_threshold: 0.1 |
|
filter_word_list: "data/filters.yaml" |
|
max_pwatermark: 0.45 |
|
batch_size: 8 |
|
num_workers: 6 |
|
multinode: True |
|
min_size: 512 |
|
train: |
|
shards: |
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -" |
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -" |
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -" |
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -" |
|
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar" |
|
shuffle: 10000 |
|
image_key: jpg |
|
image_transforms: |
|
- target: torchvision.transforms.Resize |
|
params: |
|
size: 512 |
|
interpolation: 3 |
|
- target: torchvision.transforms.RandomCrop |
|
params: |
|
size: 512 |
|
postprocess: |
|
target: ldm.data.laion.AddMask |
|
params: |
|
mode: "512train-large" |
|
p_drop: 0.25 |
|
# NOTE use enough shards to avoid empty validation loops in workers |
|
validation: |
|
shards: |
|
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - " |
|
shuffle: 0 |
|
image_key: jpg |
|
image_transforms: |
|
- target: torchvision.transforms.Resize |
|
params: |
|
size: 512 |
|
interpolation: 3 |
|
- target: torchvision.transforms.CenterCrop |
|
params: |
|
size: 512 |
|
postprocess: |
|
target: ldm.data.laion.AddMask |
|
params: |
|
mode: "512train-large" |
|
p_drop: 0.25 |
|
|
|
lightning: |
|
find_unused_parameters: True |
|
modelcheckpoint: |
|
params: |
|
every_n_train_steps: 5000 |
|
|
|
callbacks: |
|
metrics_over_trainsteps_checkpoint: |
|
params: |
|
every_n_train_steps: 10000 |
|
|
|
image_logger: |
|
target: main.ImageLogger |
|
params: |
|
enable_autocast: False |
|
disabled: False |
|
batch_frequency: 1000 |
|
max_images: 4 |
|
increase_log_steps: False |
|
log_first_step: False |
|
log_images_kwargs: |
|
use_ema_scope: False |
|
inpaint: False |
|
plot_progressive_rows: False |
|
plot_diffusion_rows: False |
|
N: 4 |
|
unconditional_guidance_scale: 5.0 |
|
unconditional_guidance_label: [""] |
|
ddim_steps: 50 # todo check these out for depth2img, |
|
ddim_eta: 0.0 # todo check these out for depth2img, |
|
|
|
trainer: |
|
benchmark: True |
|
val_check_interval: 5000000 |
|
num_sanity_val_steps: 0 |
|
accumulate_grad_batches: 1
|
|
|