You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.5 KiB
54 lines
2.5 KiB
import torch |
|
import comfy.utils |
|
|
|
class PatchModelAddDownscale: |
|
upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}), |
|
"downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"downscale_after_skip": ("BOOLEAN", {"default": True}), |
|
"downscale_method": (s.upscale_methods,), |
|
"upscale_method": (s.upscale_methods,), |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "_for_testing" |
|
|
|
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): |
|
model_sampling = model.get_model_object("model_sampling") |
|
sigma_start = model_sampling.percent_to_sigma(start_percent) |
|
sigma_end = model_sampling.percent_to_sigma(end_percent) |
|
|
|
def input_block_patch(h, transformer_options): |
|
if transformer_options["block"][1] == block_number: |
|
sigma = transformer_options["sigmas"][0].item() |
|
if sigma <= sigma_start and sigma >= sigma_end: |
|
h = comfy.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled") |
|
return h |
|
|
|
def output_block_patch(h, hsp, transformer_options): |
|
if h.shape[2] != hsp.shape[2]: |
|
h = comfy.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled") |
|
return h, hsp |
|
|
|
m = model.clone() |
|
if downscale_after_skip: |
|
m.set_model_input_block_patch_after_skip(input_block_patch) |
|
else: |
|
m.set_model_input_block_patch(input_block_patch) |
|
m.set_model_output_block_patch(output_block_patch) |
|
return (m, ) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"PatchModelAddDownscale": PatchModelAddDownscale, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
# Sampling |
|
"PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)", |
|
}
|
|
|