You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1277 lines
44 KiB
1277 lines
44 KiB
# pylint: skip-file |
|
# HAT from https://github.com/XPixelGroup/HAT/blob/main/hat/archs/hat_arch.py |
|
import math |
|
import re |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from .timm.helpers import to_2tuple |
|
from .timm.weight_init import trunc_normal_ |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * ( |
|
x.ndim - 1 |
|
) # work with diff dim tensors, not just 2D ConvNets |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() # binarize |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py |
|
""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) # type: ignore |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
"""Channel attention used in RCAN. |
|
Args: |
|
num_feat (int): Channel number of intermediate features. |
|
squeeze_factor (int): Channel squeeze factor. Default: 16. |
|
""" |
|
|
|
def __init__(self, num_feat, squeeze_factor=16): |
|
super(ChannelAttention, self).__init__() |
|
self.attention = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
y = self.attention(x) |
|
return x * y |
|
|
|
|
|
class CAB(nn.Module): |
|
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): |
|
super(CAB, self).__init__() |
|
|
|
self.cab = nn.Sequential( |
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), |
|
nn.GELU(), |
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), |
|
ChannelAttention(num_feat, squeeze_factor), |
|
) |
|
|
|
def forward(self, x): |
|
return self.cab(x) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (b, h, w, c) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*b, window_size, window_size, c) |
|
""" |
|
b, h, w, c = x.shape |
|
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) |
|
) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, h, w): |
|
""" |
|
Args: |
|
windows: (num_windows*b, window_size, window_size, c) |
|
window_size (int): Window size |
|
h (int): Height of image |
|
w (int): Width of image |
|
Returns: |
|
x: (b, h, w, c) |
|
""" |
|
b = int(windows.shape[0] / (h * w / window_size / window_size)) |
|
x = windows.view( |
|
b, h // window_size, w // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r"""Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size # Wh, Ww |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
# define a parameter table of relative position bias |
|
self.relative_position_bias_table = nn.Parameter( # type: ignore |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) |
|
) # 2*Wh-1 * 2*Ww-1, nH |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=0.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, rpi, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*b, n, c) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
b_, n, c = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(b_, n, 3, self.num_heads, c // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = ( |
|
qkv[0], |
|
qkv[1], |
|
qkv[2], |
|
) # make torchscript happy (cannot use tensor as tuple) |
|
|
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1, |
|
) # Wh*Ww,Wh*Ww,nH |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() # nH, Wh*Ww, Wh*Ww |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nw = mask.shape[0] |
|
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze( |
|
1 |
|
).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, n, n) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(b_, n, c) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class HAB(nn.Module): |
|
r"""Hybrid Attention Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
compress_ratio=3, |
|
squeeze_factor=30, |
|
conv_scale=0.01, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
# if window size is larger than input resolution, we don't partition windows |
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert ( |
|
0 <= self.shift_size < self.window_size |
|
), "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
|
|
self.conv_scale = conv_scale |
|
self.conv_block = CAB( |
|
num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
def forward(self, x, x_size, rpi_sa, attn_mask): |
|
h, w = x_size |
|
b, _, c = x.shape |
|
# assert seq_len == h * w, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(b, h, w, c) |
|
|
|
# Conv_X |
|
conv_x = self.conv_block(x.permute(0, 3, 1, 2)) |
|
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) |
|
|
|
# cyclic shift |
|
if self.shift_size > 0: |
|
shifted_x = torch.roll( |
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
attn_mask = attn_mask |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
# partition windows |
|
x_windows = window_partition( |
|
shifted_x, self.window_size |
|
) # nw*b, window_size, window_size, c |
|
x_windows = x_windows.view( |
|
-1, self.window_size * self.window_size, c |
|
) # nw*b, window_size*window_size, c |
|
|
|
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size |
|
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) |
|
|
|
# merge windows |
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) |
|
shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c |
|
|
|
# reverse cyclic shift |
|
if self.shift_size > 0: |
|
attn_x = torch.roll( |
|
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
attn_x = shifted_x |
|
attn_x = attn_x.view(b, h * w, c) |
|
|
|
# FFN |
|
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
r"""Patch Merging Layer. |
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: b, h*w, c |
|
""" |
|
h, w = self.input_resolution |
|
b, seq_len, c = x.shape |
|
assert seq_len == h * w, "input feature has wrong size" |
|
assert h % 2 == 0 and w % 2 == 0, f"x size ({h}*{w}) are not even." |
|
|
|
x = x.view(b, h, w, c) |
|
|
|
x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c |
|
x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c |
|
x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c |
|
x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c |
|
x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c |
|
x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class OCAB(nn.Module): |
|
# overlapping cross-attention block |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
window_size, |
|
overlap_ratio, |
|
num_heads, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
mlp_ratio=2, |
|
norm_layer=nn.LayerNorm, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
self.overlap_win_size = int(window_size * overlap_ratio) + window_size |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.unfold = nn.Unfold( |
|
kernel_size=(self.overlap_win_size, self.overlap_win_size), |
|
stride=window_size, |
|
padding=(self.overlap_win_size - window_size) // 2, |
|
) |
|
|
|
# define a parameter table of relative position bias |
|
self.relative_position_bias_table = nn.Parameter( # type: ignore |
|
torch.zeros( |
|
(window_size + self.overlap_win_size - 1) |
|
* (window_size + self.overlap_win_size - 1), |
|
num_heads, |
|
) |
|
) # 2*Wh-1 * 2*Ww-1, nH |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=0.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU |
|
) |
|
|
|
def forward(self, x, x_size, rpi): |
|
h, w = x_size |
|
b, _, c = x.shape |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(b, h, w, c) |
|
|
|
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, w |
|
q = qkv[0].permute(0, 2, 3, 1) # b, h, w, c |
|
kv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w |
|
|
|
# partition windows |
|
q_windows = window_partition( |
|
q, self.window_size |
|
) # nw*b, window_size, window_size, c |
|
q_windows = q_windows.view( |
|
-1, self.window_size * self.window_size, c |
|
) # nw*b, window_size*window_size, c |
|
|
|
kv_windows = self.unfold(kv) # b, c*w*w, nw |
|
kv_windows = rearrange( |
|
kv_windows, |
|
"b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch", |
|
nc=2, |
|
ch=c, |
|
owh=self.overlap_win_size, |
|
oww=self.overlap_win_size, |
|
).contiguous() # 2, nw*b, ow*ow, c |
|
# Do the above rearrangement without the rearrange function |
|
# kv_windows = kv_windows.view( |
|
# 2, b, self.overlap_win_size, self.overlap_win_size, c, -1 |
|
# ) |
|
# kv_windows = kv_windows.permute(0, 5, 1, 2, 3, 4).contiguous() |
|
# kv_windows = kv_windows.view( |
|
# 2, -1, self.overlap_win_size * self.overlap_win_size, c |
|
# ) |
|
|
|
k_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, c |
|
|
|
b_, nq, _ = q_windows.shape |
|
_, n, _ = k_windows.shape |
|
d = self.dim // self.num_heads |
|
q = q_windows.reshape(b_, nq, self.num_heads, d).permute( |
|
0, 2, 1, 3 |
|
) # nw*b, nH, nq, d |
|
k = k_windows.reshape(b_, n, self.num_heads, d).permute( |
|
0, 2, 1, 3 |
|
) # nw*b, nH, n, d |
|
v = v_windows.reshape(b_, n, self.num_heads, d).permute( |
|
0, 2, 1, 3 |
|
) # nw*b, nH, n, d |
|
|
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( |
|
self.window_size * self.window_size, |
|
self.overlap_win_size * self.overlap_win_size, |
|
-1, |
|
) # ws*ws, wse*wse, nH |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() # nH, ws*ws, wse*wse |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
attn = self.softmax(attn) |
|
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim) |
|
|
|
# merge windows |
|
attn_windows = attn_windows.view( |
|
-1, self.window_size, self.window_size, self.dim |
|
) |
|
x = window_reverse(attn_windows, self.window_size, h, w) # b h w c |
|
x = x.view(b, h * w, self.dim) |
|
|
|
x = self.proj(x) + shortcut |
|
|
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
|
|
class AttenBlocks(nn.Module): |
|
"""A series of attention blocks for one RHAG. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
compress_ratio, |
|
squeeze_factor, |
|
conv_scale, |
|
overlap_ratio, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
# build blocks |
|
self.blocks = nn.ModuleList( |
|
[ |
|
HAB( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
compress_ratio=compress_ratio, |
|
squeeze_factor=squeeze_factor, |
|
conv_scale=conv_scale, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
norm_layer=norm_layer, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
# OCAB |
|
self.overlap_attn = OCAB( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
window_size=window_size, |
|
overlap_ratio=overlap_ratio, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
mlp_ratio=mlp_ratio, # type: ignore |
|
norm_layer=norm_layer, |
|
) |
|
|
|
# patch merging layer |
|
if downsample is not None: |
|
self.downsample = downsample( |
|
input_resolution, dim=dim, norm_layer=norm_layer |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, x_size, params): |
|
for blk in self.blocks: |
|
x = blk(x, x_size, params["rpi_sa"], params["attn_mask"]) |
|
|
|
x = self.overlap_attn(x, x_size, params["rpi_oca"]) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x |
|
|
|
|
|
class RHAG(nn.Module): |
|
"""Residual Hybrid Attention Group (RHAG). |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
resi_connection: The convolutional block before residual connection. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
compress_ratio, |
|
squeeze_factor, |
|
conv_scale, |
|
overlap_ratio, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
img_size=224, |
|
patch_size=4, |
|
resi_connection="1conv", |
|
): |
|
super(RHAG, self).__init__() |
|
|
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
|
|
self.residual_group = AttenBlocks( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
depth=depth, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
compress_ratio=compress_ratio, |
|
squeeze_factor=squeeze_factor, |
|
conv_scale=conv_scale, |
|
overlap_ratio=overlap_ratio, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path, |
|
norm_layer=norm_layer, |
|
downsample=downsample, |
|
use_checkpoint=use_checkpoint, |
|
) |
|
|
|
if resi_connection == "1conv": |
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
elif resi_connection == "identity": |
|
self.conv = nn.Identity() |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=0, |
|
embed_dim=dim, |
|
norm_layer=None, |
|
) |
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=0, |
|
embed_dim=dim, |
|
norm_layer=None, |
|
) |
|
|
|
def forward(self, x, x_size, params): |
|
return ( |
|
self.patch_embed( |
|
self.conv( |
|
self.patch_unembed(self.residual_group(x, x_size, params), x_size) |
|
) |
|
) |
|
+ x |
|
) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r"""Image to Patch Embedding |
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [ |
|
img_size[0] // patch_size[0], # type: ignore |
|
img_size[1] // patch_size[1], # type: ignore |
|
] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
r"""Image to Patch Unembedding |
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [ |
|
img_size[0] // patch_size[0], # type: ignore |
|
img_size[1] // patch_size[1], # type: ignore |
|
] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, x, x_size): |
|
x = ( |
|
x.transpose(1, 2) |
|
.contiguous() |
|
.view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) |
|
) # b Ph*Pw c |
|
return x |
|
|
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: # scale = 2^n |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError( |
|
f"scale {scale} is not supported. " "Supported scales: 2^n and 3." |
|
) |
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
class HAT(nn.Module): |
|
r"""Hybrid Attention Transformer |
|
A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`. |
|
Some codes are based on SwinIR. |
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 64 |
|
patch_size (int | tuple(int)): Patch size. Default: 1 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each Swin Transformer layer. |
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
window_size (int): Window size. Default: 7 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None |
|
drop_rate (float): Dropout rate. Default: 0 |
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction |
|
img_range: Image range. 1. or 255. |
|
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None |
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' |
|
""" |
|
|
|
def __init__( |
|
self, |
|
state_dict, |
|
**kwargs, |
|
): |
|
super(HAT, self).__init__() |
|
|
|
# Defaults |
|
img_size = 64 |
|
patch_size = 1 |
|
in_chans = 3 |
|
embed_dim = 96 |
|
depths = (6, 6, 6, 6) |
|
num_heads = (6, 6, 6, 6) |
|
window_size = 7 |
|
compress_ratio = 3 |
|
squeeze_factor = 30 |
|
conv_scale = 0.01 |
|
overlap_ratio = 0.5 |
|
mlp_ratio = 4.0 |
|
qkv_bias = True |
|
qk_scale = None |
|
drop_rate = 0.0 |
|
attn_drop_rate = 0.0 |
|
drop_path_rate = 0.1 |
|
norm_layer = nn.LayerNorm |
|
ape = False |
|
patch_norm = True |
|
use_checkpoint = False |
|
upscale = 2 |
|
img_range = 1.0 |
|
upsampler = "" |
|
resi_connection = "1conv" |
|
|
|
self.state = state_dict |
|
self.model_arch = "HAT" |
|
self.sub_type = "SR" |
|
self.supports_fp16 = False |
|
self.support_bf16 = True |
|
self.min_size_restriction = 16 |
|
|
|
state_keys = list(state_dict.keys()) |
|
|
|
num_feat = state_dict["conv_last.weight"].shape[1] |
|
in_chans = state_dict["conv_first.weight"].shape[1] |
|
num_out_ch = state_dict["conv_last.weight"].shape[0] |
|
embed_dim = state_dict["conv_first.weight"].shape[0] |
|
|
|
if "conv_before_upsample.0.weight" in state_keys: |
|
if "conv_up1.weight" in state_keys: |
|
upsampler = "nearest+conv" |
|
else: |
|
upsampler = "pixelshuffle" |
|
supports_fp16 = False |
|
elif "upsample.0.weight" in state_keys: |
|
upsampler = "pixelshuffledirect" |
|
else: |
|
upsampler = "" |
|
upscale = 1 |
|
if upsampler == "nearest+conv": |
|
upsample_keys = [ |
|
x for x in state_keys if "conv_up" in x and "bias" not in x |
|
] |
|
|
|
for upsample_key in upsample_keys: |
|
upscale *= 2 |
|
elif upsampler == "pixelshuffle": |
|
upsample_keys = [ |
|
x |
|
for x in state_keys |
|
if "upsample" in x and "conv" not in x and "bias" not in x |
|
] |
|
for upsample_key in upsample_keys: |
|
shape = self.state[upsample_key].shape[0] |
|
upscale *= math.sqrt(shape // num_feat) |
|
upscale = int(upscale) |
|
elif upsampler == "pixelshuffledirect": |
|
upscale = int( |
|
math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) |
|
) |
|
|
|
max_layer_num = 0 |
|
max_block_num = 0 |
|
for key in state_keys: |
|
result = re.match( |
|
r"layers.(\d*).residual_group.blocks.(\d*).conv_block.cab.0.weight", key |
|
) |
|
if result: |
|
layer_num, block_num = result.groups() |
|
max_layer_num = max(max_layer_num, int(layer_num)) |
|
max_block_num = max(max_block_num, int(block_num)) |
|
|
|
depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] |
|
|
|
if ( |
|
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" |
|
in state_keys |
|
): |
|
num_heads_num = self.state[ |
|
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" |
|
].shape[-1] |
|
num_heads = [num_heads_num for _ in range(max_layer_num + 1)] |
|
else: |
|
num_heads = depths |
|
|
|
mlp_ratio = float( |
|
self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] |
|
/ embed_dim |
|
) |
|
|
|
# TODO: could actually count the layers, but this should do |
|
if "layers.0.conv.4.weight" in state_keys: |
|
resi_connection = "3conv" |
|
else: |
|
resi_connection = "1conv" |
|
|
|
window_size = int(math.sqrt(self.state["relative_position_index_SA"].shape[0])) |
|
|
|
# Not sure if this is needed or used at all anywhere in HAT's config |
|
if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: |
|
img_size = int( |
|
math.sqrt( |
|
self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] |
|
) |
|
* window_size |
|
) |
|
|
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.overlap_ratio = overlap_ratio |
|
|
|
self.in_nc = in_chans |
|
self.out_nc = num_out_ch |
|
self.num_feat = num_feat |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.depths = depths |
|
self.window_size = window_size |
|
self.mlp_ratio = mlp_ratio |
|
self.scale = upscale |
|
self.upsampler = upsampler |
|
self.img_size = img_size |
|
self.img_range = img_range |
|
self.resi_connection = resi_connection |
|
|
|
num_in_ch = in_chans |
|
# num_out_ch = in_chans |
|
# num_feat = 64 |
|
self.img_range = img_range |
|
if in_chans == 3: |
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
else: |
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
self.upscale = upscale |
|
self.upsampler = upsampler |
|
|
|
# relative position index |
|
relative_position_index_SA = self.calculate_rpi_sa() |
|
relative_position_index_OCA = self.calculate_rpi_oca() |
|
self.register_buffer("relative_position_index_SA", relative_position_index_SA) |
|
self.register_buffer("relative_position_index_OCA", relative_position_index_OCA) |
|
|
|
# ------------------------- 1, shallow feature extraction ------------------------- # |
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
# ------------------------- 2, deep feature extraction ------------------------- # |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.num_features = embed_dim |
|
self.mlp_ratio = mlp_ratio |
|
|
|
# split image into non-overlapping patches |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
# merge non-overlapping patches into image |
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=embed_dim, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None, |
|
) |
|
|
|
# absolute position embedding |
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter( # type: ignore[arg-type] |
|
torch.zeros(1, num_patches, embed_dim) |
|
) |
|
trunc_normal_(self.absolute_pos_embed, std=0.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
# stochastic depth |
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] # stochastic depth decay rule |
|
|
|
# build Residual Hybrid Attention Groups (RHAG) |
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RHAG( |
|
dim=embed_dim, |
|
input_resolution=(patches_resolution[0], patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
compress_ratio=compress_ratio, |
|
squeeze_factor=squeeze_factor, |
|
conv_scale=conv_scale, |
|
overlap_ratio=overlap_ratio, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[ |
|
sum(depths[:i_layer]) : sum(depths[: i_layer + 1]) # type: ignore |
|
], # no impact on SR results |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
) |
|
self.layers.append(layer) |
|
self.norm = norm_layer(self.num_features) |
|
|
|
# build the last conv layer in deep feature extraction |
|
if resi_connection == "1conv": |
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
elif resi_connection == "identity": |
|
self.conv_after_body = nn.Identity() |
|
|
|
# ------------------------- 3, high quality image reconstruction ------------------------- # |
|
if self.upsampler == "pixelshuffle": |
|
# for classical SR |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) |
|
) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
self.apply(self._init_weights) |
|
self.load_state_dict(self.state, strict=False) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def calculate_rpi_sa(self): |
|
# calculate relative position index for SA |
|
coords_h = torch.arange(self.window_size) |
|
coords_w = torch.arange(self.window_size) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww |
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) # 2, Wh*Ww, Wh*Ww |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() # Wh*Ww, Wh*Ww, 2 |
|
relative_coords[:, :, 0] += self.window_size - 1 # shift to start from 0 |
|
relative_coords[:, :, 1] += self.window_size - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size - 1 |
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww |
|
return relative_position_index |
|
|
|
def calculate_rpi_oca(self): |
|
# calculate relative position index for OCA |
|
window_size_ori = self.window_size |
|
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size) |
|
|
|
coords_h = torch.arange(window_size_ori) |
|
coords_w = torch.arange(window_size_ori) |
|
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, ws, ws |
|
coords_ori_flatten = torch.flatten(coords_ori, 1) # 2, ws*ws |
|
|
|
coords_h = torch.arange(window_size_ext) |
|
coords_w = torch.arange(window_size_ext) |
|
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, wse, wse |
|
coords_ext_flatten = torch.flatten(coords_ext, 1) # 2, wse*wse |
|
|
|
relative_coords = ( |
|
coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] |
|
) # 2, ws*ws, wse*wse |
|
|
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() # ws*ws, wse*wse, 2 |
|
relative_coords[:, :, 0] += ( |
|
window_size_ori - window_size_ext + 1 |
|
) # shift to start from 0 |
|
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1 |
|
|
|
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
return relative_position_index |
|
|
|
def calculate_mask(self, x_size): |
|
# calculate attention mask for SW-MSA |
|
h, w = x_size |
|
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1 |
|
h_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
w_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size |
|
) # nw, window_size, window_size, 1 |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( |
|
attn_mask == 0, float(0.0) |
|
) |
|
|
|
return attn_mask |
|
|
|
@torch.jit.ignore # type: ignore |
|
def no_weight_decay(self): |
|
return {"absolute_pos_embed"} |
|
|
|
@torch.jit.ignore # type: ignore |
|
def no_weight_decay_keywords(self): |
|
return {"relative_position_bias_table"} |
|
|
|
def check_image_size(self, x): |
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size |
|
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") |
|
return x |
|
|
|
def forward_features(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
|
|
# Calculate attention mask and relative position index in advance to speed up inference. |
|
# The original code is very time-cosuming for large window size. |
|
attn_mask = self.calculate_mask(x_size).to(x.device) |
|
params = { |
|
"attn_mask": attn_mask, |
|
"rpi_sa": self.relative_position_index_SA, |
|
"rpi_oca": self.relative_position_index_OCA, |
|
} |
|
|
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for layer in self.layers: |
|
x = layer(x, x_size, params) |
|
|
|
x = self.norm(x) # b seq_len c |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
H, W = x.shape[2:] |
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
x = self.check_image_size(x) |
|
|
|
if self.upsampler == "pixelshuffle": |
|
# for classical SR |
|
x = self.conv_first(x) |
|
x = self.conv_after_body(self.forward_features(x)) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.conv_last(self.upsample(x)) |
|
|
|
x = x / self.img_range + self.mean |
|
|
|
return x[:, :, : H * self.upscale, : W * self.upscale]
|
|
|