You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
313 lines
13 KiB
313 lines
13 KiB
#taken from: https://github.com/lllyasviel/ControlNet |
|
#and modified |
|
|
|
import torch |
|
import torch as th |
|
import torch.nn as nn |
|
|
|
from ..ldm.modules.diffusionmodules.util import ( |
|
zero_module, |
|
timestep_embedding, |
|
) |
|
|
|
from ..ldm.modules.attention import SpatialTransformer |
|
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample |
|
from ..ldm.util import exists |
|
import comfy.ops |
|
|
|
class ControlledUnetModel(UNetModel): |
|
#implemented in the ldm unet |
|
pass |
|
|
|
class ControlNet(nn.Module): |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
hint_channels, |
|
num_res_blocks, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
dtype=torch.float32, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
use_spatial_transformer=False, # custom transformer support |
|
transformer_depth=1, # custom transformer support |
|
context_dim=None, # custom transformer support |
|
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model |
|
legacy=True, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
adm_in_channels=None, |
|
transformer_depth_middle=None, |
|
transformer_depth_output=None, |
|
attn_precision=None, |
|
device=None, |
|
operations=comfy.ops.disable_weight_init, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
assert use_spatial_transformer == True, "use_spatial_transformer has to be true" |
|
if use_spatial_transformer: |
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
|
|
|
if context_dim is not None: |
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
|
# from omegaconf.listconfig import ListConfig |
|
# if type(context_dim) == ListConfig: |
|
# context_dim = list(context_dim) |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.dims = dims |
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
|
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult") |
|
self.num_res_blocks = num_res_blocks |
|
|
|
if disable_self_attentions is not None: |
|
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not |
|
assert len(disable_self_attentions) == len(channel_mult) |
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) |
|
|
|
transformer_depth = transformer_depth[:] |
|
|
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = dtype |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
|
|
if self.num_classes is not None: |
|
if isinstance(self.num_classes, int): |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
elif self.num_classes == "continuous": |
|
print("setting up linear c_adm embedding layer") |
|
self.label_emb = nn.Linear(1, time_embed_dim) |
|
elif self.num_classes == "sequential": |
|
assert adm_in_channels is not None |
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
) |
|
else: |
|
raise ValueError() |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) |
|
) |
|
] |
|
) |
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)]) |
|
|
|
self.input_hint_block = TimestepEmbedSequential( |
|
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device) |
|
) |
|
|
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations, |
|
) |
|
] |
|
ch = mult * model_channels |
|
num_transformers = transformer_depth.pop(0) |
|
if num_transformers > 0: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
#num_heads = 1 |
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append( |
|
SpatialTransformer( |
|
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
#num_heads = 1 |
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
mid_block = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
)] |
|
if transformer_depth_middle >= 0: |
|
mid_block += [SpatialTransformer( # always uses a self-attn |
|
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dtype=self.dtype, |
|
device=device, |
|
operations=operations |
|
)] |
|
self.middle_block = TimestepEmbedSequential(*mid_block) |
|
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device) |
|
self._feature_size += ch |
|
|
|
def make_zero_conv(self, channels, operations=None, dtype=None, device=None): |
|
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device)) |
|
|
|
def forward(self, x, hint, timesteps, context, y=None, **kwargs): |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
guided_hint = self.input_hint_block(hint, emb, context) |
|
|
|
outs = [] |
|
|
|
hs = [] |
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
h = module(h, emb, context) |
|
h += guided_hint |
|
guided_hint = None |
|
else: |
|
h = module(h, emb, context) |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h, emb, context)) |
|
|
|
return outs |
|
|
|
|