import nodes from comfy.graph_utils import is_link class DependencyCycleError(Exception): pass class NodeInputError(Exception): pass class DynamicPrompt: def __init__(self, original_prompt): # The original prompt provided by the user self.original_prompt = original_prompt # Any extra pieces of the graph created during execution self.ephemeral_prompt = {} self.ephemeral_parents = {} self.ephemeral_display = {} def get_node(self, node_id): if node_id in self.ephemeral_prompt: return self.ephemeral_prompt[node_id] if node_id in self.original_prompt: return self.original_prompt[node_id] return None def add_ephemeral_node(self, node_id, node_info, parent_id, display_id): self.ephemeral_prompt[node_id] = node_info self.ephemeral_parents[node_id] = parent_id self.ephemeral_display[node_id] = display_id def get_real_node_id(self, node_id): while node_id in self.ephemeral_parents: node_id = self.ephemeral_parents[node_id] return node_id def get_parent_node_id(self, node_id): return self.ephemeral_parents.get(node_id, None) def get_display_node_id(self, node_id): while node_id in self.ephemeral_display: node_id = self.ephemeral_display[node_id] return node_id def all_node_ids(self): return set(self.original_prompt.keys()).union(set(self.ephemeral_prompt.keys())) def get_input_info(class_def, input_name): valid_inputs = class_def.INPUT_TYPES() input_info = None input_category = None if "required" in valid_inputs and input_name in valid_inputs["required"]: input_category = "required" input_info = valid_inputs["required"][input_name] elif "optional" in valid_inputs and input_name in valid_inputs["optional"]: input_category = "optional" input_info = valid_inputs["optional"][input_name] elif "hidden" in valid_inputs and input_name in valid_inputs["hidden"]: input_category = "hidden" input_info = valid_inputs["hidden"][input_name] if input_info is None: return None, None, None input_type = input_info[0] if len(input_info) > 1: extra_info = input_info[1] else: extra_info = {} return input_type, input_category, extra_info class TopologicalSort: def __init__(self, dynprompt): self.dynprompt = dynprompt self.pendingNodes = {} self.blockCount = {} # Number of nodes this node is directly blocked by self.blocking = {} # Which nodes are blocked by this node def get_input_info(self, unique_id, input_name): class_type = self.dynprompt.get_node(unique_id)["class_type"] class_def = nodes.NODE_CLASS_MAPPINGS[class_type] return get_input_info(class_def, input_name) def make_input_strong_link(self, to_node_id, to_input): inputs = self.dynprompt.get_node(to_node_id)["inputs"] if to_input not in inputs: raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but there is no input to that node at all") value = inputs[to_input] if not is_link(value): raise NodeInputError(f"Node {to_node_id} says it needs input {to_input}, but that value is a constant") from_node_id, from_socket = value self.add_strong_link(from_node_id, from_socket, to_node_id) def add_strong_link(self, from_node_id, from_socket, to_node_id): self.add_node(from_node_id) if to_node_id not in self.blocking[from_node_id]: self.blocking[from_node_id][to_node_id] = {} self.blockCount[to_node_id] += 1 self.blocking[from_node_id][to_node_id][from_socket] = True def add_node(self, unique_id, include_lazy=False, subgraph_nodes=None): if unique_id in self.pendingNodes: return self.pendingNodes[unique_id] = True self.blockCount[unique_id] = 0 self.blocking[unique_id] = {} inputs = self.dynprompt.get_node(unique_id)["inputs"] for input_name in inputs: value = inputs[input_name] if is_link(value): from_node_id, from_socket = value if subgraph_nodes is not None and from_node_id not in subgraph_nodes: continue input_type, input_category, input_info = self.get_input_info(unique_id, input_name) is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"] if include_lazy or not is_lazy: self.add_strong_link(from_node_id, from_socket, unique_id) def get_ready_nodes(self): return [node_id for node_id in self.pendingNodes if self.blockCount[node_id] == 0] def pop_node(self, unique_id): del self.pendingNodes[unique_id] for blocked_node_id in self.blocking[unique_id]: self.blockCount[blocked_node_id] -= 1 del self.blocking[unique_id] def is_empty(self): return len(self.pendingNodes) == 0 # ExecutionList implements a topological dissolve of the graph. After a node is staged for execution, # it can still be returned to the graph after having further dependencies added. class ExecutionList(TopologicalSort): def __init__(self, dynprompt, output_cache): super().__init__(dynprompt) self.output_cache = output_cache self.staged_node_id = None def add_strong_link(self, from_node_id, from_socket, to_node_id): if self.output_cache.get(from_node_id) is not None: # Nothing to do return super().add_strong_link(from_node_id, from_socket, to_node_id) def stage_node_execution(self): assert self.staged_node_id is None if self.is_empty(): return None, None, None available = self.get_ready_nodes() if len(available) == 0: cycled_nodes = self.get_nodes_in_cycle() # Because cycles composed entirely of static nodes are caught during initial validation, # we will 'blame' the first node in the cycle that is not a static node. blamed_node = cycled_nodes[0] for node_id in cycled_nodes: display_node_id = self.dynprompt.get_display_node_id(node_id) if display_node_id != node_id: blamed_node = display_node_id break ex = DependencyCycleError("Dependency cycle detected") error_details = { "node_id": blamed_node, "exception_message": str(ex), "exception_type": "graph.DependencyCycleError", "traceback": [], "current_inputs": [] } return None, error_details, ex next_node = available[0] # If an output node is available, do that first. # Technically this has no effect on the overall length of execution, but it feels better as a user # for a PreviewImage to display a result as soon as it can # Some other heuristics could probably be used here to improve the UX further. for node_id in available: class_type = self.dynprompt.get_node(node_id)["class_type"] class_def = nodes.NODE_CLASS_MAPPINGS[class_type] if hasattr(class_def, 'OUTPUT_NODE') and class_def.OUTPUT_NODE == True: next_node = node_id break self.staged_node_id = next_node return self.staged_node_id, None, None def unstage_node_execution(self): assert self.staged_node_id is not None self.staged_node_id = None def complete_node_execution(self): node_id = self.staged_node_id self.pop_node(node_id) self.staged_node_id = None def get_nodes_in_cycle(self): # We'll dissolve the graph in reverse topological order to leave only the nodes in the cycle. # We're skipping some of the performance optimizations from the original TopologicalSort to keep # the code simple (and because having a cycle in the first place is a catastrophic error) blocked_by = { node_id: {} for node_id in self.pendingNodes } for from_node_id in self.blocking: for to_node_id in self.blocking[from_node_id]: if True in self.blocking[from_node_id][to_node_id].values(): blocked_by[to_node_id][from_node_id] = True to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0] while len(to_remove) > 0: for node_id in to_remove: for to_node_id in blocked_by: if node_id in blocked_by[to_node_id]: del blocked_by[to_node_id][node_id] del blocked_by[node_id] to_remove = [node_id for node_id in blocked_by if len(blocked_by[node_id]) == 0] return list(blocked_by.keys()) # Return this from a node and any users will be blocked with the given error message. class ExecutionBlocker: def __init__(self, message): self.message = message