#From https://github.com/kornia/kornia import math import torch import torch.nn.functional as F import comfy.model_management def get_canny_nms_kernel(device=None, dtype=None): """Utility function that returns 3x3 kernels for the Canny Non-maximal suppression.""" return torch.tensor( [ [[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]], [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]], [[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], [[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], [[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], [[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], ], device=device, dtype=dtype, ) def get_hysteresis_kernel(device=None, dtype=None): """Utility function that returns the 3x3 kernels for the Canny hysteresis.""" return torch.tensor( [ [[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]], [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], [[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], [[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], [[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]], ], device=device, dtype=dtype, ) def gaussian_blur_2d(img, kernel_size, sigma): ksize_half = (kernel_size - 1) * 0.5 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) pdf = torch.exp(-0.5 * (x / sigma).pow(2)) x_kernel = pdf / pdf.sum() x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] img = torch.nn.functional.pad(img, padding, mode="reflect") img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3]) return img def get_sobel_kernel2d(device=None, dtype=None): kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype) kernel_y = kernel_x.transpose(0, 1) return torch.stack([kernel_x, kernel_y]) def spatial_gradient(input, normalized: bool = True): r"""Compute the first order image derivative in both x and y using a Sobel operator. .. image:: _static/img/spatial_gradient.png Args: input: input image tensor with shape :math:`(B, C, H, W)`. mode: derivatives modality, can be: `sobel` or `diff`. order: the order of the derivatives. normalized: whether the output is normalized. Return: the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`. .. note:: See a working example `here `__. Examples: >>> input = torch.rand(1, 3, 4, 4) >>> output = spatial_gradient(input) # 1x3x2x4x4 >>> output.shape torch.Size([1, 3, 2, 4, 4]) """ # KORNIA_CHECK_IS_TENSOR(input) # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W']) # allocate kernel kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype) if normalized: kernel = normalize_kernel2d(kernel) # prepare kernel b, c, h, w = input.shape tmp_kernel = kernel[:, None, ...] # Pad with "replicate for spatial dims, but with zeros for channel spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2] out_channels: int = 2 padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate') out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1) return out.reshape(b, c, out_channels, h, w) def rgb_to_grayscale(image, rgb_weights = None): r"""Convert a RGB image to grayscale version of image. .. image:: _static/img/rgb_to_grayscale.png The image data is assumed to be in the range of (0, 1). Args: image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`. rgb_weights: Weights that will be applied on each channel (RGB). The sum of the weights should add up to one. Returns: grayscale version of the image with shape :math:`(*,1,H,W)`. .. note:: See a working example `here `__. Example: >>> input = torch.rand(2, 3, 4, 5) >>> gray = rgb_to_grayscale(input) # 2x1x4x5 """ if len(image.shape) < 3 or image.shape[-3] != 3: raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}") if rgb_weights is None: # 8 bit images if image.dtype == torch.uint8: rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8) # floating point images elif image.dtype in (torch.float16, torch.float32, torch.float64): rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype) else: raise TypeError(f"Unknown data type: {image.dtype}") else: # is tensor that we make sure is in the same device/dtype rgb_weights = rgb_weights.to(image) # unpack the color image channels with RGB order r: Tensor = image[..., 0:1, :, :] g: Tensor = image[..., 1:2, :, :] b: Tensor = image[..., 2:3, :, :] w_r, w_g, w_b = rgb_weights.unbind() return w_r * r + w_g * g + w_b * b def canny( input, low_threshold = 0.1, high_threshold = 0.2, kernel_size = 5, sigma = 1, hysteresis = True, eps = 1e-6, ): r"""Find edges of the input image and filters them using the Canny algorithm. .. image:: _static/img/canny.png Args: input: input image tensor with shape :math:`(B,C,H,W)`. low_threshold: lower threshold for the hysteresis procedure. high_threshold: upper threshold for the hysteresis procedure. kernel_size: the size of the kernel for the gaussian blur. sigma: the standard deviation of the kernel for the gaussian blur. hysteresis: if True, applies the hysteresis edge tracking. Otherwise, the edges are divided between weak (0.5) and strong (1) edges. eps: regularization number to avoid NaN during backprop. Returns: - the canny edge magnitudes map, shape of :math:`(B,1,H,W)`. - the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`. .. note:: See a working example `here `__. Example: >>> input = torch.rand(5, 3, 4, 4) >>> magnitude, edges = canny(input) # 5x3x4x4 >>> magnitude.shape torch.Size([5, 1, 4, 4]) >>> edges.shape torch.Size([5, 1, 4, 4]) """ # KORNIA_CHECK_IS_TENSOR(input) # KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W']) # KORNIA_CHECK( # low_threshold <= high_threshold, # "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: " # f"{low_threshold}>{high_threshold}", # ) # KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}') # KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}') device = input.device dtype = input.dtype # To Grayscale if input.shape[1] == 3: input = rgb_to_grayscale(input) # Gaussian filter blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma) # Compute the gradients gradients: Tensor = spatial_gradient(blurred, normalized=False) # Unpack the edges gx: Tensor = gradients[:, :, 0] gy: Tensor = gradients[:, :, 1] # Compute gradient magnitude and angle magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps) angle: Tensor = torch.atan2(gy, gx) # Radians to Degrees angle = 180.0 * angle / math.pi # Round angle to the nearest 45 degree angle = torch.round(angle / 45) * 45 # Non-maximal suppression nms_kernels: Tensor = get_canny_nms_kernel(device, dtype) nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2) # Get the indices for both directions positive_idx: Tensor = (angle / 45) % 8 positive_idx = positive_idx.long() negative_idx: Tensor = ((angle / 45) + 4) % 8 negative_idx = negative_idx.long() # Apply the non-maximum suppression to the different directions channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx) channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx) channel_select_filtered: Tensor = torch.stack( [channel_select_filtered_positive, channel_select_filtered_negative], 1 ) is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0 magnitude = magnitude * is_max # Threshold edges: Tensor = F.threshold(magnitude, low_threshold, 0.0) low: Tensor = magnitude > low_threshold high: Tensor = magnitude > high_threshold edges = low * 0.5 + high * 0.5 edges = edges.to(dtype) # Hysteresis if hysteresis: edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype) hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype) while ((edges_old - edges).abs() != 0).any(): weak: Tensor = (edges == 0.5).float() strong: Tensor = (edges == 1).float() hysteresis_magnitude: Tensor = F.conv2d( edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2 ) hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype) hysteresis_magnitude = hysteresis_magnitude * weak + strong edges_old = edges.clone() edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5 edges = hysteresis_magnitude return magnitude, edges class Canny: @classmethod def INPUT_TYPES(s): return {"required": {"image": ("IMAGE",), "low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}), "high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01}) }} RETURN_TYPES = ("IMAGE",) FUNCTION = "detect_edge" CATEGORY = "image/preprocessors" def detect_edge(self, image, low_threshold, high_threshold): output = canny(image.to(comfy.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold) img_out = output[1].to(comfy.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1) return (img_out,) NODE_CLASS_MAPPINGS = { "Canny": Canny, }