import torch import comfy.model_management import comfy.sample import comfy.samplers import comfy.utils class PerpNeg: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), "empty_conditioning": ("CONDITIONING", ), "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "_for_testing" def patch(self, model, empty_conditioning, neg_scale): m = model.clone() nocond = comfy.sample.convert_cond(empty_conditioning) def cfg_function(args): model = args["model"] noise_pred_pos = args["cond_denoised"] noise_pred_neg = args["uncond_denoised"] cond_scale = args["cond_scale"] x = args["input"] sigma = args["sigma"] model_options = args["model_options"] nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") (noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options) pos = noise_pred_pos - noise_pred_nocond neg = noise_pred_neg - noise_pred_nocond perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg perp_neg = perp * neg_scale cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) cfg_result = x - cfg_result return cfg_result m.set_model_sampler_cfg_function(cfg_function) return (m, ) NODE_CLASS_MAPPINGS = { "PerpNeg": PerpNeg, } NODE_DISPLAY_NAME_MAPPINGS = { "PerpNeg": "Perp-Neg", }