# pylint: skip-file """Original MAT project is copyright of fenglingwb: https://github.com/fenglinglwb/MAT Code used for this implementation of MAT is modified from lama-cleaner, copyright of Sanster: https://github.com/fenglinglwb/MAT""" import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .mat.utils import ( Conv2dLayer, FullyConnectedLayer, activation_funcs, bias_act, conv2d_resample, normalize_2nd_moment, setup_filter, to_2tuple, upsample2d, ) class ModulatedConv2d(nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. style_dim, # dimension of the style code demodulate=True, # perfrom demodulation up=1, # Integer upsampling factor. down=1, # Integer downsampling factor. resample_filter=[ 1, 3, 3, 1, ], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output to +-X, None = disable clamping. ): super().__init__() self.demodulate = demodulate self.weight = torch.nn.Parameter( torch.randn([1, out_channels, in_channels, kernel_size, kernel_size]) ) self.out_channels = out_channels self.kernel_size = kernel_size self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) self.padding = self.kernel_size // 2 self.up = up self.down = down self.register_buffer("resample_filter", setup_filter(resample_filter)) self.conv_clamp = conv_clamp self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1) def forward(self, x, style): batch, in_channels, height, width = x.shape style = self.affine(style).view(batch, 1, in_channels, 1, 1).to(x.device) weight = self.weight.to(x.device) * self.weight_gain * style if self.demodulate: decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt() weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1) weight = weight.view( batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size ) x = x.view(1, batch * in_channels, height, width) x = conv2d_resample( x=x, w=weight, f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, groups=batch, ) out = x.view(batch, self.out_channels, *x.shape[2:]) return out class StyleConv(torch.nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. style_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this layer. kernel_size=3, # Convolution kernel size. up=1, # Integer upsampling factor. use_noise=False, # Enable noise input? activation="lrelu", # Activation function: 'relu', 'lrelu', etc. resample_filter=[ 1, 3, 3, 1, ], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping. demodulate=True, # perform demodulation ): super().__init__() self.conv = ModulatedConv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, style_dim=style_dim, demodulate=demodulate, up=up, resample_filter=resample_filter, conv_clamp=conv_clamp, ) self.use_noise = use_noise self.resolution = resolution if use_noise: self.register_buffer("noise_const", torch.randn([resolution, resolution])) self.noise_strength = torch.nn.Parameter(torch.zeros([])) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) self.activation = activation self.act_gain = activation_funcs[activation].def_gain self.conv_clamp = conv_clamp def forward(self, x, style, noise_mode="random", gain=1): x = self.conv(x, style) assert noise_mode in ["random", "const", "none"] if self.use_noise: if noise_mode == "random": xh, xw = x.size()[-2:] noise = ( torch.randn([x.shape[0], 1, xh, xw], device=x.device) * self.noise_strength ) if noise_mode == "const": noise = self.noise_const * self.noise_strength x = x + noise act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None out = bias_act( x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp ) return out class ToRGB(torch.nn.Module): def __init__( self, in_channels, out_channels, style_dim, kernel_size=1, resample_filter=[1, 3, 3, 1], conv_clamp=None, demodulate=False, ): super().__init__() self.conv = ModulatedConv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, style_dim=style_dim, demodulate=demodulate, resample_filter=resample_filter, conv_clamp=conv_clamp, ) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) self.register_buffer("resample_filter", setup_filter(resample_filter)) self.conv_clamp = conv_clamp def forward(self, x, style, skip=None): x = self.conv(x, style) out = bias_act(x, self.bias, clamp=self.conv_clamp) if skip is not None: if skip.shape != out.shape: skip = upsample2d(skip, self.resample_filter) out = out + skip return out def get_style_code(a, b): return torch.cat([a, b.to(a.device)], dim=1) class DecBlockFirst(nn.Module): def __init__( self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels, ): super().__init__() self.fc = FullyConnectedLayer( in_features=in_channels * 2, out_features=in_channels * 4**2, activation=activation, ) self.conv = StyleConv( in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=4, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB( in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, ws, gs, E_features, noise_mode="random"): x = self.fc(x).view(x.shape[0], -1, 4, 4) x = x + E_features[2] style = get_style_code(ws[:, 0], gs) x = self.conv(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, 1], gs) img = self.toRGB(x, style, skip=None) return x, img class MappingNet(torch.nn.Module): def __init__( self, z_dim, # Input latent (Z) dimensionality, 0 = no latent. c_dim, # Conditioning label (C) dimensionality, 0 = no label. w_dim, # Intermediate latent (W) dimensionality. num_ws, # Number of intermediate latents to output, None = do not broadcast. num_layers=8, # Number of mapping layers. embed_features=None, # Label embedding dimensionality, None = same as w_dim. layer_features=None, # Number of intermediate features in the mapping layers, None = same as w_dim. activation="lrelu", # Activation function: 'relu', 'lrelu', etc. lr_multiplier=0.01, # Learning rate multiplier for the mapping layers. w_avg_beta=0.995, # Decay for tracking the moving average of W during training, None = do not track. ): super().__init__() self.z_dim = z_dim self.c_dim = c_dim self.w_dim = w_dim self.num_ws = num_ws self.num_layers = num_layers self.w_avg_beta = w_avg_beta if embed_features is None: embed_features = w_dim if c_dim == 0: embed_features = 0 if layer_features is None: layer_features = w_dim features_list = ( [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] ) if c_dim > 0: self.embed = FullyConnectedLayer(c_dim, embed_features) for idx in range(num_layers): in_features = features_list[idx] out_features = features_list[idx + 1] layer = FullyConnectedLayer( in_features, out_features, activation=activation, lr_multiplier=lr_multiplier, ) setattr(self, f"fc{idx}", layer) if num_ws is not None and w_avg_beta is not None: self.register_buffer("w_avg", torch.zeros([w_dim])) def forward( self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False ): # Embed, normalize, and concat inputs. x = None with torch.autograd.profiler.record_function("input"): if self.z_dim > 0: x = normalize_2nd_moment(z.to(torch.float32)) if self.c_dim > 0: y = normalize_2nd_moment(self.embed(c.to(torch.float32))) x = torch.cat([x, y], dim=1) if x is not None else y # Main layers. for idx in range(self.num_layers): layer = getattr(self, f"fc{idx}") x = layer(x) # Update moving average of W. if self.w_avg_beta is not None and self.training and not skip_w_avg_update: with torch.autograd.profiler.record_function("update_w_avg"): self.w_avg.copy_( x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta) ) # Broadcast. if self.num_ws is not None: with torch.autograd.profiler.record_function("broadcast"): x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) # Apply truncation. if truncation_psi != 1: with torch.autograd.profiler.record_function("truncate"): assert self.w_avg_beta is not None if self.num_ws is None or truncation_cutoff is None: x = self.w_avg.lerp(x, truncation_psi) else: x[:, :truncation_cutoff] = self.w_avg.lerp( x[:, :truncation_cutoff], truncation_psi ) return x class DisFromRGB(nn.Module): def __init__( self, in_channels, out_channels, activation ): # res = 2, ..., resolution_log2 super().__init__() self.conv = Conv2dLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, activation=activation, ) def forward(self, x): return self.conv(x) class DisBlock(nn.Module): def __init__( self, in_channels, out_channels, activation ): # res = 2, ..., resolution_log2 super().__init__() self.conv0 = Conv2dLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, ) self.conv1 = Conv2dLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, down=2, activation=activation, ) self.skip = Conv2dLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, down=2, bias=False, ) def forward(self, x): skip = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x) x = self.conv1(x, gain=np.sqrt(0.5)) out = skip + x return out def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512): NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512} return NF[2**stage] class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = FullyConnectedLayer( in_features=in_features, out_features=hidden_features, activation="lrelu" ) self.fc2 = FullyConnectedLayer( in_features=hidden_features, out_features=out_features ) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = ( x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) ) return windows def window_reverse(windows, window_size: int, H: int, W: int): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) # B = windows.shape[0] / (H * W / window_size / window_size) x = windows.view( B, H // window_size, W // window_size, window_size, window_size, -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class Conv2dLayerPartial(nn.Module): def __init__( self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. bias=True, # Apply additive bias before the activation function? activation="linear", # Activation function: 'relu', 'lrelu', etc. up=1, # Integer upsampling factor. down=1, # Integer downsampling factor. resample_filter=[ 1, 3, 3, 1, ], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output to +-X, None = disable clamping. trainable=True, # Update the weights of this layer during training? ): super().__init__() self.conv = Conv2dLayer( in_channels, out_channels, kernel_size, bias, activation, up, down, resample_filter, conv_clamp, trainable, ) self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size) self.slide_winsize = kernel_size**2 self.stride = down self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0 def forward(self, x, mask=None): if mask is not None: with torch.no_grad(): if self.weight_maskUpdater.type() != x.type(): self.weight_maskUpdater = self.weight_maskUpdater.to(x) update_mask = F.conv2d( mask, self.weight_maskUpdater, bias=None, stride=self.stride, padding=self.padding, ) mask_ratio = self.slide_winsize / (update_mask + 1e-8) update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1 mask_ratio = torch.mul(mask_ratio, update_mask) x = self.conv(x) x = torch.mul(x, mask_ratio) return x, update_mask else: x = self.conv(x) return x, None class WindowAttention(nn.Module): r"""Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, down_ratio=1, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.q = FullyConnectedLayer(in_features=dim, out_features=dim) self.k = FullyConnectedLayer(in_features=dim, out_features=dim) self.v = FullyConnectedLayer(in_features=dim, out_features=dim) self.proj = FullyConnectedLayer(in_features=dim, out_features=dim) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask_windows=None, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape norm_x = F.normalize(x, p=2.0, dim=-1) q = ( self.q(norm_x) .reshape(B_, N, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) k = ( self.k(norm_x) .view(B_, -1, self.num_heads, C // self.num_heads) .permute(0, 2, 3, 1) ) v = ( self.v(x) .view(B_, -1, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) attn = (q @ k) * self.scale if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( 1 ).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) if mask_windows is not None: attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1) attn = attn + attn_mask_windows.masked_fill( attn_mask_windows == 0, float(-100.0) ).masked_fill(attn_mask_windows == 1, float(0.0)) with torch.no_grad(): mask_windows = torch.clamp( torch.sum(mask_windows, dim=1, keepdim=True), 0, 1 ).repeat(1, N, 1) attn = self.softmax(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) return x, mask_windows class SwinTransformerBlock(nn.Module): r"""Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, input_resolution, num_heads, down_ratio=1, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert ( 0 <= self.shift_size < self.window_size ), "shift_size must in 0-window_size" if self.shift_size > 0: down_ratio = 1 self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, down_ratio=down_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.fuse = FullyConnectedLayer( in_features=dim * 2, out_features=dim, activation="lrelu" ) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) if self.shift_size > 0: attn_mask = self.calculate_mask(self.input_resolution) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def calculate_mask(self, x_size): # calculate attention mask for SW-MSA H, W = x_size img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) w_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) return attn_mask def forward(self, x, x_size, mask=None): # H, W = self.input_resolution H, W = x_size B, _, C = x.shape # assert L == H * W, "input feature has wrong size" shortcut = x x = x.view(B, H, W, C) if mask is not None: mask = mask.view(B, H, W, 1) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll( x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) ) if mask is not None: shifted_mask = torch.roll( mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) ) else: shifted_x = x if mask is not None: shifted_mask = mask # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size * self.window_size, C ) # nW*B, window_size*window_size, C if mask is not None: mask_windows = window_partition(shifted_mask, self.window_size) mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1) else: mask_windows = None # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size if self.input_resolution == x_size: attn_windows, mask_windows = self.attn( x_windows, mask_windows, mask=self.attn_mask ) # nW*B, window_size*window_size, C else: attn_windows, mask_windows = self.attn( x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device) ) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C if mask is not None: mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1) shifted_mask = window_reverse(mask_windows, self.window_size, H, W) # reverse cyclic shift if self.shift_size > 0: x = torch.roll( shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) ) if mask is not None: mask = torch.roll( shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2) ) else: x = shifted_x if mask is not None: mask = shifted_mask x = x.view(B, H * W, C) if mask is not None: mask = mask.view(B, H * W, 1) # FFN x = self.fuse(torch.cat([shortcut, x], dim=-1)) x = self.mlp(x) return x, mask class PatchMerging(nn.Module): def __init__(self, in_channels, out_channels, down=2): super().__init__() self.conv = Conv2dLayerPartial( in_channels=in_channels, out_channels=out_channels, kernel_size=3, activation="lrelu", down=down, ) self.down = down def forward(self, x, x_size, mask=None): x = token2feature(x, x_size) if mask is not None: mask = token2feature(mask, x_size) x, mask = self.conv(x, mask) if self.down != 1: ratio = 1 / self.down x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio)) x = feature2token(x) if mask is not None: mask = feature2token(mask) return x, x_size, mask class PatchUpsampling(nn.Module): def __init__(self, in_channels, out_channels, up=2): super().__init__() self.conv = Conv2dLayerPartial( in_channels=in_channels, out_channels=out_channels, kernel_size=3, activation="lrelu", up=up, ) self.up = up def forward(self, x, x_size, mask=None): x = token2feature(x, x_size) if mask is not None: mask = token2feature(mask, x_size) x, mask = self.conv(x, mask) if self.up != 1: x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up)) x = feature2token(x) if mask is not None: mask = feature2token(mask) return x, x_size, mask class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, dim, input_resolution, depth, num_heads, window_size, down_ratio=1, mlp_ratio=2.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # patch merging layer if downsample is not None: # self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) self.downsample = downsample else: self.downsample = None # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, down_ratio=down_ratio, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth) ] ) self.conv = Conv2dLayerPartial( in_channels=dim, out_channels=dim, kernel_size=3, activation="lrelu" ) def forward(self, x, x_size, mask=None): if self.downsample is not None: x, x_size, mask = self.downsample(x, x_size, mask) identity = x for blk in self.blocks: if self.use_checkpoint: x, mask = checkpoint.checkpoint(blk, x, x_size, mask) else: x, mask = blk(x, x_size, mask) if mask is not None: mask = token2feature(mask, x_size) x, mask = self.conv(token2feature(x, x_size), mask) x = feature2token(x) + identity if mask is not None: mask = feature2token(mask) return x, x_size, mask class ToToken(nn.Module): def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1): super().__init__() self.proj = Conv2dLayerPartial( in_channels=in_channels, out_channels=dim, kernel_size=kernel_size, activation="lrelu", ) def forward(self, x, mask): x, mask = self.proj(x, mask) return x, mask class EncFromRGB(nn.Module): def __init__( self, in_channels, out_channels, activation ): # res = 2, ..., resolution_log2 super().__init__() self.conv0 = Conv2dLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, activation=activation, ) self.conv1 = Conv2dLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, activation=activation, ) def forward(self, x): x = self.conv0(x) x = self.conv1(x) return x class ConvBlockDown(nn.Module): def __init__( self, in_channels, out_channels, activation ): # res = 2, ..., resolution_log super().__init__() self.conv0 = Conv2dLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, activation=activation, down=2, ) self.conv1 = Conv2dLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, activation=activation, ) def forward(self, x): x = self.conv0(x) x = self.conv1(x) return x def token2feature(x, x_size): B, _, C = x.shape h, w = x_size x = x.permute(0, 2, 1).reshape(B, C, h, w) return x def feature2token(x): B, C, _, _ = x.shape x = x.view(B, C, -1).transpose(1, 2) return x class Encoder(nn.Module): def __init__( self, res_log2, img_channels, activation, patch_size=5, channels=16, drop_path_rate=0.1, ): super().__init__() self.resolution = [] for i in range(res_log2, 3, -1): # from input size to 16x16 res = 2**i self.resolution.append(res) if i == res_log2: block = EncFromRGB(img_channels * 2 + 1, nf(i), activation) else: block = ConvBlockDown(nf(i + 1), nf(i), activation) setattr(self, "EncConv_Block_%dx%d" % (res, res), block) def forward(self, x): out = {} for res in self.resolution: res_log2 = int(np.log2(res)) x = getattr(self, "EncConv_Block_%dx%d" % (res, res))(x) out[res_log2] = x return out class ToStyle(nn.Module): def __init__(self, in_channels, out_channels, activation, drop_rate): super().__init__() self.conv = nn.Sequential( Conv2dLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2, ), Conv2dLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2, ), Conv2dLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2, ), ) self.pool = nn.AdaptiveAvgPool2d(1) self.fc = FullyConnectedLayer( in_features=in_channels, out_features=out_channels, activation=activation ) # self.dropout = nn.Dropout(drop_rate) def forward(self, x): x = self.conv(x) x = self.pool(x) x = self.fc(x.flatten(start_dim=1)) # x = self.dropout(x) return x class DecBlockFirstV2(nn.Module): def __init__( self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels, ): super().__init__() self.res = res self.conv0 = Conv2dLayer( in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, ) self.conv1 = StyleConv( in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB( in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, ws, gs, E_features, noise_mode="random"): # x = self.fc(x).view(x.shape[0], -1, 4, 4) x = self.conv0(x) x = x + E_features[self.res] style = get_style_code(ws[:, 0], gs) x = self.conv1(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, 1], gs) img = self.toRGB(x, style, skip=None) return x, img class DecBlock(nn.Module): def __init__( self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels, ): # res = 4, ..., resolution_log2 super().__init__() self.res = res self.conv0 = StyleConv( in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, up=2, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.conv1 = StyleConv( in_channels=out_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB( in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, img, ws, gs, E_features, noise_mode="random"): style = get_style_code(ws[:, self.res * 2 - 9], gs) x = self.conv0(x, style, noise_mode=noise_mode) x = x + E_features[self.res] style = get_style_code(ws[:, self.res * 2 - 8], gs) x = self.conv1(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, self.res * 2 - 7], gs) img = self.toRGB(x, style, skip=img) return x, img class Decoder(nn.Module): def __init__( self, res_log2, activation, style_dim, use_noise, demodulate, img_channels ): super().__init__() self.Dec_16x16 = DecBlockFirstV2( 4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels ) for res in range(5, res_log2 + 1): setattr( self, "Dec_%dx%d" % (2**res, 2**res), DecBlock( res, nf(res - 1), nf(res), activation, style_dim, use_noise, demodulate, img_channels, ), ) self.res_log2 = res_log2 def forward(self, x, ws, gs, E_features, noise_mode="random"): x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode) for res in range(5, self.res_log2 + 1): block = getattr(self, "Dec_%dx%d" % (2**res, 2**res)) x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode) return img class DecStyleBlock(nn.Module): def __init__( self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels, ): super().__init__() self.res = res self.conv0 = StyleConv( in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, up=2, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.conv1 = StyleConv( in_channels=out_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB( in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, img, style, skip, noise_mode="random"): x = self.conv0(x, style, noise_mode=noise_mode) x = x + skip x = self.conv1(x, style, noise_mode=noise_mode) img = self.toRGB(x, style, skip=img) return x, img class FirstStage(nn.Module): def __init__( self, img_channels, img_resolution=256, dim=180, w_dim=512, use_noise=False, demodulate=True, activation="lrelu", ): super().__init__() res = 64 self.conv_first = Conv2dLayerPartial( in_channels=img_channels + 1, out_channels=dim, kernel_size=3, activation=activation, ) self.enc_conv = nn.ModuleList() down_time = int(np.log2(img_resolution // res)) # 根据图片尺寸构建 swim transformer 的层数 for i in range(down_time): # from input size to 64 self.enc_conv.append( Conv2dLayerPartial( in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation, ) ) # from 64 -> 16 -> 64 depths = [2, 3, 4, 3, 2] ratios = [1, 1 / 2, 1 / 2, 2, 2] num_heads = 6 window_sizes = [8, 16, 16, 16, 8] drop_path_rate = 0.1 dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] self.tran = nn.ModuleList() for i, depth in enumerate(depths): res = int(res * ratios[i]) if ratios[i] < 1: merge = PatchMerging(dim, dim, down=int(1 / ratios[i])) elif ratios[i] > 1: merge = PatchUpsampling(dim, dim, up=ratios[i]) else: merge = None self.tran.append( BasicLayer( dim=dim, input_resolution=[res, res], depth=depth, num_heads=num_heads, window_size=window_sizes[i], drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])], downsample=merge, ) ) # global style down_conv = [] for i in range(int(np.log2(16))): down_conv.append( Conv2dLayer( in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation, ) ) down_conv.append(nn.AdaptiveAvgPool2d((1, 1))) self.down_conv = nn.Sequential(*down_conv) self.to_style = FullyConnectedLayer( in_features=dim, out_features=dim * 2, activation=activation ) self.ws_style = FullyConnectedLayer( in_features=w_dim, out_features=dim, activation=activation ) self.to_square = FullyConnectedLayer( in_features=dim, out_features=16 * 16, activation=activation ) style_dim = dim * 3 self.dec_conv = nn.ModuleList() for i in range(down_time): # from 64 to input size res = res * 2 self.dec_conv.append( DecStyleBlock( res, dim, dim, activation, style_dim, use_noise, demodulate, img_channels, ) ) def forward(self, images_in, masks_in, ws, noise_mode="random"): x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1) skips = [] x, mask = self.conv_first(x, masks_in) # input size skips.append(x) for i, block in enumerate(self.enc_conv): # input size to 64 x, mask = block(x, mask) if i != len(self.enc_conv) - 1: skips.append(x) x_size = x.size()[-2:] x = feature2token(x) mask = feature2token(mask) mid = len(self.tran) // 2 for i, block in enumerate(self.tran): # 64 to 16 if i < mid: x, x_size, mask = block(x, x_size, mask) skips.append(x) elif i > mid: x, x_size, mask = block(x, x_size, None) x = x + skips[mid - i] else: x, x_size, mask = block(x, x_size, None) mul_map = torch.ones_like(x) * 0.5 mul_map = F.dropout(mul_map, training=True).to(x.device) ws = self.ws_style(ws[:, -1]).to(x.device) add_n = self.to_square(ws).unsqueeze(1).to(x.device) add_n = ( F.interpolate( add_n, size=x.size(1), mode="linear", align_corners=False ) .squeeze(1) .unsqueeze(-1) ).to(x.device) x = x * mul_map + add_n * (1 - mul_map) gs = self.to_style( self.down_conv(token2feature(x, x_size)).flatten(start_dim=1) ).to(x.device) style = torch.cat([gs, ws], dim=1) x = token2feature(x, x_size).contiguous() img = None for i, block in enumerate(self.dec_conv): x, img = block( x, img, style, skips[len(self.dec_conv) - i - 1], noise_mode=noise_mode ) # ensemble img = img * (1 - masks_in) + images_in * masks_in return img class SynthesisNet(nn.Module): def __init__( self, w_dim, # Intermediate latent (W) dimensionality. img_resolution, # Output image resolution. img_channels=3, # Number of color channels. channel_base=32768, # Overall multiplier for the number of channels. channel_decay=1.0, channel_max=512, # Maximum number of channels in any layer. activation="lrelu", # Activation function: 'relu', 'lrelu', etc. drop_rate=0.5, use_noise=False, demodulate=True, ): super().__init__() resolution_log2 = int(np.log2(img_resolution)) assert img_resolution == 2**resolution_log2 and img_resolution >= 4 self.num_layers = resolution_log2 * 2 - 3 * 2 self.img_resolution = img_resolution self.resolution_log2 = resolution_log2 # first stage self.first_stage = FirstStage( img_channels, img_resolution=img_resolution, w_dim=w_dim, use_noise=False, demodulate=demodulate, ) # second stage self.enc = Encoder( resolution_log2, img_channels, activation, patch_size=5, channels=16 ) self.to_square = FullyConnectedLayer( in_features=w_dim, out_features=16 * 16, activation=activation ) self.to_style = ToStyle( in_channels=nf(4), out_channels=nf(2) * 2, activation=activation, drop_rate=drop_rate, ) style_dim = w_dim + nf(2) * 2 self.dec = Decoder( resolution_log2, activation, style_dim, use_noise, demodulate, img_channels ) def forward(self, images_in, masks_in, ws, noise_mode="random", return_stg1=False): out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode) # encoder x = images_in * masks_in + out_stg1 * (1 - masks_in) x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1) E_features = self.enc(x) fea_16 = E_features[4].to(x.device) mul_map = torch.ones_like(fea_16) * 0.5 mul_map = F.dropout(mul_map, training=True).to(x.device) add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1) add_n = F.interpolate( add_n, size=fea_16.size()[-2:], mode="bilinear", align_corners=False ).to(x.device) fea_16 = fea_16 * mul_map + add_n * (1 - mul_map) E_features[4] = fea_16 # style gs = self.to_style(fea_16).to(x.device) # decoder img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode).to(x.device) # ensemble img = img * (1 - masks_in) + images_in * masks_in if not return_stg1: return img else: return img, out_stg1 class Generator(nn.Module): def __init__( self, z_dim, # Input latent (Z) dimensionality, 0 = no latent. c_dim, # Conditioning label (C) dimensionality, 0 = no label. w_dim, # Intermediate latent (W) dimensionality. img_resolution, # resolution of generated image img_channels, # Number of input color channels. synthesis_kwargs={}, # Arguments for SynthesisNetwork. mapping_kwargs={}, # Arguments for MappingNetwork. ): super().__init__() self.z_dim = z_dim self.c_dim = c_dim self.w_dim = w_dim self.img_resolution = img_resolution self.img_channels = img_channels self.synthesis = SynthesisNet( w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, **synthesis_kwargs, ) self.mapping = MappingNet( z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.synthesis.num_layers, **mapping_kwargs, ) def forward( self, images_in, masks_in, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False, noise_mode="none", return_stg1=False, ): ws = self.mapping( z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, skip_w_avg_update=skip_w_avg_update, ) img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode) return img class MAT(nn.Module): def __init__(self, state_dict): super(MAT, self).__init__() self.model_arch = "MAT" self.sub_type = "Inpaint" self.in_nc = 3 self.out_nc = 3 self.scale = 1 self.supports_fp16 = False self.supports_bf16 = True self.min_size = 512 self.pad_mod = 512 self.pad_to_square = True seed = 240 # pick up a random number random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) self.model = Generator( z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3 ) self.z = torch.from_numpy(np.random.randn(1, self.model.z_dim)) # [1., 512] self.label = torch.zeros([1, self.model.c_dim]) self.state = { k.replace("synthesis", "model.synthesis").replace( "mapping", "model.mapping" ): v for k, v in state_dict.items() } self.load_state_dict(self.state, strict=False) def forward(self, image, mask): """Input images and output images have same size images: [H, W, C] RGB masks: [H, W] mask area == 255 return: BGR IMAGE """ image = image * 2 - 1 # [0, 1] -> [-1, 1] mask = 1 - mask output = self.model( image, mask, self.z, self.label, truncation_psi=1, noise_mode="none" ) return output * 0.5 + 0.5