import torch from . import model_base from . import utils def state_dict_key_replace(state_dict, keys_to_replace): for x in keys_to_replace: if x in state_dict: state_dict[keys_to_replace[x]] = state_dict.pop(x) return state_dict def state_dict_prefix_replace(state_dict, replace_prefix): for rp in replace_prefix: replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys()))) for x in replace: state_dict[x[1]] = state_dict.pop(x[0]) return state_dict class ClipTarget: def __init__(self, tokenizer, clip): self.clip = clip self.tokenizer = tokenizer self.params = {} class BASE: unet_config = {} unet_extra_config = { "num_heads": -1, "num_head_channels": 64, } clip_prefix = [] clip_vision_prefix = None noise_aug_config = None @classmethod def matches(s, unet_config): for k in s.unet_config: if s.unet_config[k] != unet_config[k]: return False return True def v_prediction(self, state_dict, prefix=""): return False def inpaint_model(self): return self.unet_config["in_channels"] > 4 def __init__(self, unet_config): self.unet_config = unet_config self.latent_format = self.latent_format() for x in self.unet_extra_config: self.unet_config[x] = self.unet_extra_config[x] def get_model(self, state_dict, prefix=""): if self.inpaint_model(): return model_base.SDInpaint(self, v_prediction=self.v_prediction(state_dict, prefix)) elif self.noise_aug_config is not None: return model_base.SD21UNCLIP(self, self.noise_aug_config, v_prediction=self.v_prediction(state_dict, prefix)) else: return model_base.BaseModel(self, v_prediction=self.v_prediction(state_dict, prefix)) def process_clip_state_dict(self, state_dict): return state_dict def process_clip_state_dict_for_saving(self, state_dict): replace_prefix = {"": "cond_stage_model."} return state_dict_prefix_replace(state_dict, replace_prefix) def process_unet_state_dict_for_saving(self, state_dict): replace_prefix = {"": "model.diffusion_model."} return state_dict_prefix_replace(state_dict, replace_prefix) def process_vae_state_dict_for_saving(self, state_dict): replace_prefix = {"": "first_stage_model."} return state_dict_prefix_replace(state_dict, replace_prefix)