import torch from PIL import Image, ImageOps from io import BytesIO import struct import numpy as np from comfy.cli_args import args, LatentPreviewMethod from comfy.taesd.taesd import TAESD import folder_paths MAX_PREVIEW_RESOLUTION = 512 class LatentPreviewer: def decode_latent_to_preview(self, x0): pass def decode_latent_to_preview_image(self, preview_format, x0): preview_image = self.decode_latent_to_preview(x0) if hasattr(Image, 'Resampling'): resampling = Image.Resampling.BILINEAR else: resampling = Image.ANTIALIAS preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), resampling) preview_type = 1 if preview_format == "JPEG": preview_type = 1 elif preview_format == "PNG": preview_type = 2 bytesIO = BytesIO() header = struct.pack(">I", preview_type) bytesIO.write(header) preview_image.save(bytesIO, format=preview_format, quality=95) preview_bytes = bytesIO.getvalue() return preview_bytes class TAESDPreviewerImpl(LatentPreviewer): def __init__(self, taesd): self.taesd = taesd def decode_latent_to_preview(self, x0): x_sample = self.taesd.decoder(x0)[0].detach() # x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2] x_sample = x_sample.sub(0.5).mul(2) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) preview_image = Image.fromarray(x_sample) return preview_image class Latent2RGBPreviewer(LatentPreviewer): def __init__(self, latent_rgb_factors): self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu") def decode_latent_to_preview(self, x0): latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors latents_ubyte = (((latent_image + 1) / 2) .clamp(0, 1) # change scale from -1..1 to 0..1 .mul(0xFF) # to 0..255 .byte()).cpu() return Image.fromarray(latents_ubyte.numpy()) def get_previewer(device, latent_format): previewer = None method = args.preview_method if method != LatentPreviewMethod.NoPreviews: # TODO previewer methods taesd_decoder_path = folder_paths.get_full_path("vae_approx", latent_format.taesd_decoder_name) if method == LatentPreviewMethod.Auto: method = LatentPreviewMethod.Latent2RGB if taesd_decoder_path: method = LatentPreviewMethod.TAESD if method == LatentPreviewMethod.TAESD: if taesd_decoder_path: taesd = TAESD(None, taesd_decoder_path).to(device) previewer = TAESDPreviewerImpl(taesd) else: print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name)) if previewer is None: previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors) return previewer