from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor from .utils import load_torch_file, transformers_convert import os import torch class ClipVisionModel(): def __init__(self, json_config): config = CLIPVisionConfig.from_json_file(json_config) self.model = CLIPVisionModelWithProjection(config) self.processor = CLIPImageProcessor(crop_size=224, do_center_crop=True, do_convert_rgb=True, do_normalize=True, do_resize=True, image_mean=[ 0.48145466,0.4578275,0.40821073], image_std=[0.26862954,0.26130258,0.27577711], resample=3, #bicubic size=224) def load_sd(self, sd): self.model.load_state_dict(sd, strict=False) def encode_image(self, image): img = torch.clip((255. * image[0]), 0, 255).round().int() inputs = self.processor(images=[img], return_tensors="pt") outputs = self.model(**inputs) return outputs def convert_to_transformers(sd): sd_k = sd.keys() if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k: keys_to_replace = { "embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding", "embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight", "embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight", "embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias", "embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight", "embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias", "embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight", } for x in keys_to_replace: if x in sd_k: sd[keys_to_replace[x]] = sd.pop(x) if "embedder.model.visual.proj" in sd_k: sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1) sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32) return sd def load_clipvision_from_sd(sd): sd = convert_to_transformers(sd) if "vision_model.encoder.layers.30.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") else: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") clip = ClipVisionModel(json_config) clip.load_sd(sd) return clip def load(ckpt_path): sd = load_torch_file(ckpt_path) return load_clipvision_from_sd(sd)