import torch import comfy.model_management def prepare_noise(latent_image, seed, skip=0): """ creates random noise given a latent image and a seed. optional arg skip can be used to skip and discard x number of noise generations for a given seed """ generator = torch.manual_seed(seed) for _ in range(skip): noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") return noise def prepare_mask(noise_mask, noise): """ensures noise mask is of proper dimensions""" device = comfy.model_management.get_torch_device() noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") noise_mask = noise_mask.round() noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) noise_mask = torch.cat([noise_mask] * noise.shape[0]) noise_mask = noise_mask.to(device) return noise_mask def broadcast_cond(cond, noise): """broadcasts conditioning to the noise batch size""" device = comfy.model_management.get_torch_device() copy = [] for p in cond: t = p[0] if t.shape[0] < noise.shape[0]: t = torch.cat([t] * noise.shape[0]) t = t.to(device) copy += [[t] + p[1:]] return copy def get_models_from_cond(cond, model_type): models = [] for c in cond: if model_type in c[1]: models += [c[1][model_type]] return models def load_additional_models(positive, negative): """loads additional models in positive and negative conditioning""" control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control") gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") gligen = [x[1] for x in gligen] models = control_nets + gligen comfy.model_management.load_controlnet_gpu(models) return models def cleanup_additional_models(models): """cleanup additional models that were loaded""" for m in models: m.cleanup()