import torch from contextlib import contextmanager class Linear(torch.nn.Linear): def reset_parameters(self): return None class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None class Conv3d(torch.nn.Conv3d): def reset_parameters(self): return None class GroupNorm(torch.nn.GroupNorm): def reset_parameters(self): return None class LayerNorm(torch.nn.LayerNorm): def reset_parameters(self): return None def conv_nd(dims, *args, **kwargs): if dims == 2: return Conv2d(*args, **kwargs) elif dims == 3: return Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") @contextmanager def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way old_torch_nn_linear = torch.nn.Linear force_device = device force_dtype = dtype def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None): if force_device is not None: device = force_device if force_dtype is not None: dtype = force_dtype return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype) torch.nn.Linear = linear_with_dtype try: yield finally: torch.nn.Linear = old_torch_nn_linear