import torch from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule import numpy as np class BaseModel(torch.nn.Module): def __init__(self, unet_config, v_prediction=False): super().__init__() self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3) self.diffusion_model = UNetModel(**unet_config) self.v_prediction = v_prediction if self.v_prediction: self.parameterization = "v" else: self.parameterization = "eps" if "adm_in_channels" in unet_config: self.adm_channels = unet_config["adm_in_channels"] else: self.adm_channels = 0 print("v_prediction", v_prediction) print("adm", self.adm_channels) def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): if given_betas is not None: betas = given_betas else: betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.linear_start = linear_start self.linear_end = linear_end self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}): if c_concat is not None: xc = torch.cat([x] + c_concat, dim=1) else: xc = x context = torch.cat(c_crossattn, 1) return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options) def get_dtype(self): return self.diffusion_model.dtype def is_adm(self): return self.adm_channels > 0 class SD21UNCLIP(BaseModel): def __init__(self, unet_config, noise_aug_config, v_prediction=True): super().__init__(unet_config, v_prediction) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) def encode_adm(self, **kwargs): unclip_conditioning = kwargs.get("unclip_conditioning", None) device = kwargs["device"] if unclip_conditioning is not None: adm_inputs = [] weights = [] noise_aug = [] for unclip_cond in unclip_conditioning: adm_cond = unclip_cond["clip_vision_output"].image_embeds weight = unclip_cond["strength"] noise_augment = unclip_cond["noise_augmentation"] noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = self.noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device)) adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight weights.append(weight) noise_aug.append(noise_augment) adm_inputs.append(adm_out) if len(noise_aug) > 1: adm_out = torch.stack(adm_inputs).sum(0) #TODO: add a way to control this noise_augment = 0.05 noise_level = round((self.noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = self.noise_augmentor(adm_out[:, :self.noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) adm_out = torch.cat((c_adm, noise_level_emb), 1) else: adm_out = torch.zeros((1, self.adm_channels)) return adm_out class SDInpaint(BaseModel): def __init__(self, unet_config, v_prediction=False): super().__init__(unet_config, v_prediction) self.concat_keys = ("mask", "masked_image")