CPU = 0 NO_VRAM = 1 LOW_VRAM = 2 NORMAL_VRAM = 3 accelerate_enabled = False vram_state = NORMAL_VRAM total_vram = 0 total_vram_available_mb = -1 import sys set_vram_to = NORMAL_VRAM try: import torch total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024) if total_vram <= 4096 and not "--normalvram" in sys.argv: print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") set_vram_to = LOW_VRAM except: pass if "--lowvram" in sys.argv: set_vram_to = LOW_VRAM if "--novram" in sys.argv: set_vram_to = NO_VRAM if set_vram_to != NORMAL_VRAM: try: import accelerate accelerate_enabled = True vram_state = set_vram_to except Exception as e: import traceback print(traceback.format_exc()) print("ERROR: COULD NOT ENABLE LOW VRAM MODE.") total_vram_available_mb = (total_vram - 1024) // 2 total_vram_available_mb = int(max(256, total_vram_available_mb)) print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM"][vram_state]) current_loaded_model = None current_gpu_controlnets = [] model_accelerated = False def unload_model(): global current_loaded_model global model_accelerated global current_gpu_controlnets if current_loaded_model is not None: if model_accelerated: accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model) model_accelerated = False current_loaded_model.model.cpu() current_loaded_model.unpatch_model() current_loaded_model = None if len(current_gpu_controlnets) > 0: for n in current_gpu_controlnets: n.cpu() current_gpu_controlnets = [] def load_model_gpu(model): global current_loaded_model global vram_state global model_accelerated if model is current_loaded_model: return unload_model() try: real_model = model.patch_model() except Exception as e: model.unpatch_model() raise e current_loaded_model = model if vram_state == CPU: pass elif vram_state == NORMAL_VRAM: model_accelerated = False real_model.cuda() else: if vram_state == NO_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"}) elif vram_state == LOW_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"}) accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda") model_accelerated = True return current_loaded_model def load_controlnet_gpu(models): global current_gpu_controlnets for m in current_gpu_controlnets: if m not in models: m.cpu() current_gpu_controlnets = [] for m in models: current_gpu_controlnets.append(m.cuda()) def get_free_memory(): dev = torch.cuda.current_device() stats = torch.cuda.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active return mem_free_cuda + mem_free_torch def maximum_batch_area(): global vram_state if vram_state == NO_VRAM: return 0 memory_free = get_free_memory() / (1024 * 1024) area = ((memory_free - 1024) * 0.9) / (0.6) return int(max(area, 0))