from comfy import sd1_clip import torch import os class SDXLClipG(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None, textmodel_path=None): textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json") super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path) self.empty_tokens = [[49406] + [49407] + [0] * 75] self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280)) self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) self.layer_norm_hidden_state = False if layer == "last": pass elif layer == "penultimate": layer_idx = -1 self.clip_layer(layer_idx) elif self.layer == "hidden": assert layer_idx is not None assert abs(layer_idx) < 32 self.clip_layer(layer_idx) else: raise NotImplementedError() def clip_layer(self, layer_idx): if layer_idx < 0: layer_idx -= 1 #The real last layer of SD2.x clip is the penultimate one. The last one might contain garbage. if abs(layer_idx) >= 32: self.layer = "hidden" self.layer_idx = -2 else: self.layer = "hidden" self.layer_idx = layer_idx def load_sd(self, sd): if "text_projection" in sd: self.text_projection[:] = sd.pop("text_projection") if "text_projection.weight" in sd: self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1) return super().load_sd(sd) class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, tokenizer_path=None, embedding_directory=None): super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g') class SDXLTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None): self.clip_l = sd1_clip.SD1Tokenizer(embedding_directory=embedding_directory) self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory) def tokenize_with_weights(self, text:str, return_word_ids=False): out = {} out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids) out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) return out def untokenize(self, token_weight_pair): return self.clip_g.untokenize(token_weight_pair) class SDXLClipModel(torch.nn.Module): def __init__(self, device="cpu"): super().__init__() self.clip_l = sd1_clip.SD1ClipModel(layer="hidden", layer_idx=11, device=device) self.clip_l.layer_norm_hidden_state = False self.clip_g = SDXLClipG(device=device) def clip_layer(self, layer_idx): self.clip_l.clip_layer(layer_idx) self.clip_g.clip_layer(layer_idx) def encode_token_weights(self, token_weight_pairs): token_weight_pairs_g = token_weight_pairs["g"] token_weight_pairs_l = token_weight_pairs["l"] g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) return torch.cat([l_out, g_out], dim=-1), g_pooled def load_sd(self, sd): if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: return self.clip_g.load_sd(sd) else: return self.clip_l.load_sd(sd) class SDXLRefinerClipModel(torch.nn.Module): def __init__(self, device="cpu"): super().__init__() self.clip_g = SDXLClipG(device=device) def clip_layer(self, layer_idx): self.clip_g.clip_layer(layer_idx) def encode_token_weights(self, token_weight_pairs): token_weight_pairs_g = token_weight_pairs["g"] g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g) return g_out, g_pooled def load_sd(self, sd): return self.clip_g.load_sd(sd)