import torch class Linear(torch.nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) def forward(self, input): return torch.nn.functional.linear(input, self.weight, self.bias) class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None