import comfy.samplers import comfy.utils import torch import numpy as np from tqdm.auto import trange, tqdm import math @torch.no_grad() def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None): extra_args = {} if extra_args is None else extra_args if upscale_steps is None: upscale_steps = max(len(sigmas) // 2 + 1, 2) else: upscale_steps += 1 upscale_steps = min(upscale_steps, len(sigmas) + 1) upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:] orig_shape = x.size() s_in = x.new_ones([x.shape[0]]) for i in trange(len(sigmas) - 1, disable=disable): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) x = denoised if i < len(upscales): x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled") if sigmas[i + 1] > 0: x += sigmas[i + 1] * torch.randn_like(x) return x class SamplerLCMUpscale: upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"] @classmethod def INPUT_TYPES(s): return {"required": {"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}), "scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}), "upscale_method": (s.upscale_methods,), } } RETURN_TYPES = ("SAMPLER",) CATEGORY = "sampling/custom_sampling/samplers" FUNCTION = "get_sampler" def get_sampler(self, scale_ratio, scale_steps, upscale_method): if scale_steps < 0: scale_steps = None sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method}) return (sampler, ) NODE_CLASS_MAPPINGS = { "SamplerLCMUpscale": SamplerLCMUpscale, }