|
|
|
@ -3,8 +3,6 @@ import contextlib
|
|
|
|
|
import copy |
|
|
|
|
import inspect |
|
|
|
|
|
|
|
|
|
from . import sd1_clip |
|
|
|
|
from . import sd2_clip |
|
|
|
|
from comfy import model_management |
|
|
|
|
from .ldm.util import instantiate_from_config |
|
|
|
|
from .ldm.models.autoencoder import AutoencoderKL |
|
|
|
@ -17,19 +15,28 @@ from . import clip_vision
|
|
|
|
|
from . import gligen |
|
|
|
|
from . import diffusers_convert |
|
|
|
|
from . import model_base |
|
|
|
|
from . import model_detection |
|
|
|
|
|
|
|
|
|
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): |
|
|
|
|
replace_prefix = {"model.diffusion_model.": "diffusion_model."} |
|
|
|
|
for rp in replace_prefix: |
|
|
|
|
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys()))) |
|
|
|
|
for x in replace: |
|
|
|
|
sd[x[1]] = sd.pop(x[0]) |
|
|
|
|
from . import sd1_clip |
|
|
|
|
from . import sd2_clip |
|
|
|
|
|
|
|
|
|
def load_model_weights(model, sd): |
|
|
|
|
m, u = model.load_state_dict(sd, strict=False) |
|
|
|
|
m = set(m) |
|
|
|
|
unexpected_keys = set(u) |
|
|
|
|
|
|
|
|
|
k = list(sd.keys()) |
|
|
|
|
for x in k: |
|
|
|
|
# print(x) |
|
|
|
|
if x not in unexpected_keys: |
|
|
|
|
w = sd.pop(x) |
|
|
|
|
del w |
|
|
|
|
if len(m) > 0: |
|
|
|
|
print("missing", m) |
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
def load_clip_weights(model, sd): |
|
|
|
|
k = list(sd.keys()) |
|
|
|
|
for x in k: |
|
|
|
|
if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."): |
|
|
|
|
y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.") |
|
|
|
|
sd[y] = sd.pop(x) |
|
|
|
@ -39,20 +46,8 @@ def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
|
|
|
|
|
if ids.dtype == torch.float32: |
|
|
|
|
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round() |
|
|
|
|
|
|
|
|
|
sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24) |
|
|
|
|
|
|
|
|
|
for x in load_state_dict_to: |
|
|
|
|
x.load_state_dict(sd, strict=False) |
|
|
|
|
|
|
|
|
|
if len(m) > 0 and verbose: |
|
|
|
|
print("missing keys:") |
|
|
|
|
print(m) |
|
|
|
|
if len(u) > 0 and verbose: |
|
|
|
|
print("unexpected keys:") |
|
|
|
|
print(u) |
|
|
|
|
|
|
|
|
|
model.eval() |
|
|
|
|
return model |
|
|
|
|
sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24) |
|
|
|
|
return load_model_weights(model, sd) |
|
|
|
|
|
|
|
|
|
LORA_CLIP_MAP = { |
|
|
|
|
"mlp.fc1": "mlp_fc1", |
|
|
|
@ -66,18 +61,26 @@ LORA_CLIP_MAP = {
|
|
|
|
|
LORA_UNET_MAP_ATTENTIONS = { |
|
|
|
|
"proj_in": "proj_in", |
|
|
|
|
"proj_out": "proj_out", |
|
|
|
|
"transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q", |
|
|
|
|
"transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k", |
|
|
|
|
"transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v", |
|
|
|
|
"transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0", |
|
|
|
|
"transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q", |
|
|
|
|
"transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k", |
|
|
|
|
"transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v", |
|
|
|
|
"transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0", |
|
|
|
|
"transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj", |
|
|
|
|
"transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2", |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
transformer_lora_blocks = { |
|
|
|
|
"transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q", |
|
|
|
|
"transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k", |
|
|
|
|
"transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v", |
|
|
|
|
"transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0", |
|
|
|
|
"transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q", |
|
|
|
|
"transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k", |
|
|
|
|
"transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v", |
|
|
|
|
"transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0", |
|
|
|
|
"transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj", |
|
|
|
|
"transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2", |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for i in range(10): |
|
|
|
|
for k in transformer_lora_blocks: |
|
|
|
|
LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LORA_UNET_MAP_RESNET = { |
|
|
|
|
"in_layers.2": "resnets_{}_conv1", |
|
|
|
|
"emb_layers.1": "resnets_{}_time_emb_proj", |
|
|
|
@ -470,21 +473,12 @@ def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CLIP: |
|
|
|
|
def __init__(self, config={}, embedding_directory=None, no_init=False): |
|
|
|
|
def __init__(self, target=None, embedding_directory=None, no_init=False): |
|
|
|
|
if no_init: |
|
|
|
|
return |
|
|
|
|
self.target_clip = config["target"] |
|
|
|
|
if "params" in config: |
|
|
|
|
params = config["params"] |
|
|
|
|
else: |
|
|
|
|
params = {} |
|
|
|
|
|
|
|
|
|
if self.target_clip.endswith("FrozenOpenCLIPEmbedder"): |
|
|
|
|
clip = sd2_clip.SD2ClipModel |
|
|
|
|
tokenizer = sd2_clip.SD2Tokenizer |
|
|
|
|
elif self.target_clip.endswith("FrozenCLIPEmbedder"): |
|
|
|
|
clip = sd1_clip.SD1ClipModel |
|
|
|
|
tokenizer = sd1_clip.SD1Tokenizer |
|
|
|
|
params = target.params |
|
|
|
|
clip = target.clip |
|
|
|
|
tokenizer = target.tokenizer |
|
|
|
|
|
|
|
|
|
self.device = model_management.text_encoder_device() |
|
|
|
|
params["device"] = self.device |
|
|
|
@ -497,11 +491,11 @@ class CLIP:
|
|
|
|
|
|
|
|
|
|
def clone(self): |
|
|
|
|
n = CLIP(no_init=True) |
|
|
|
|
n.target_clip = self.target_clip |
|
|
|
|
n.patcher = self.patcher.clone() |
|
|
|
|
n.cond_stage_model = self.cond_stage_model |
|
|
|
|
n.tokenizer = self.tokenizer |
|
|
|
|
n.layer_idx = self.layer_idx |
|
|
|
|
n.device = self.device |
|
|
|
|
return n |
|
|
|
|
|
|
|
|
|
def load_from_state_dict(self, sd): |
|
|
|
@ -521,21 +515,22 @@ class CLIP:
|
|
|
|
|
self.cond_stage_model.clip_layer(self.layer_idx) |
|
|
|
|
try: |
|
|
|
|
self.patcher.patch_model() |
|
|
|
|
cond = self.cond_stage_model.encode_token_weights(tokens) |
|
|
|
|
cond, pooled = self.cond_stage_model.encode_token_weights(tokens) |
|
|
|
|
self.patcher.unpatch_model() |
|
|
|
|
except Exception as e: |
|
|
|
|
self.patcher.unpatch_model() |
|
|
|
|
raise e |
|
|
|
|
|
|
|
|
|
cond_out = cond |
|
|
|
|
if return_pooled: |
|
|
|
|
eos_token_index = max(range(len(tokens[0])), key=tokens[0].__getitem__) |
|
|
|
|
pooled = cond[:, eos_token_index] |
|
|
|
|
return cond, pooled |
|
|
|
|
return cond |
|
|
|
|
return cond_out, pooled |
|
|
|
|
return cond_out |
|
|
|
|
|
|
|
|
|
def encode(self, text): |
|
|
|
|
tokens = self.tokenize(text) |
|
|
|
|
return self.encode_from_tokens(tokens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VAE: |
|
|
|
|
def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None): |
|
|
|
|
if config is None: |
|
|
|
@ -668,10 +663,10 @@ class ControlNet:
|
|
|
|
|
self.previous_controlnet = None |
|
|
|
|
self.global_average_pooling = global_average_pooling |
|
|
|
|
|
|
|
|
|
def get_control(self, x_noisy, t, cond_txt, batched_number): |
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number): |
|
|
|
|
control_prev = None |
|
|
|
|
if self.previous_controlnet is not None: |
|
|
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) |
|
|
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
|
|
|
|
|
|
|
|
|
output_dtype = x_noisy.dtype |
|
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
|
|
@ -689,7 +684,9 @@ class ControlNet:
|
|
|
|
|
|
|
|
|
|
with precision_scope(model_management.get_autocast_device(self.device)): |
|
|
|
|
self.control_model = model_management.load_if_low_vram(self.control_model) |
|
|
|
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt) |
|
|
|
|
context = torch.cat(cond['c_crossattn'], 1) |
|
|
|
|
y = cond.get('c_adm', None) |
|
|
|
|
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y) |
|
|
|
|
self.control_model = model_management.unload_if_low_vram(self.control_model) |
|
|
|
|
out = {'middle':[], 'output': []} |
|
|
|
|
autocast_enabled = torch.is_autocast_enabled() |
|
|
|
@ -749,60 +746,28 @@ class ControlNet:
|
|
|
|
|
|
|
|
|
|
def load_controlnet(ckpt_path, model=None): |
|
|
|
|
controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True) |
|
|
|
|
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' |
|
|
|
|
pth_key = 'control_model.zero_convs.0.0.weight' |
|
|
|
|
pth = False |
|
|
|
|
sd2 = False |
|
|
|
|
key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight' |
|
|
|
|
key = 'zero_convs.0.0.weight' |
|
|
|
|
if pth_key in controlnet_data: |
|
|
|
|
pth = True |
|
|
|
|
key = pth_key |
|
|
|
|
prefix = "control_model." |
|
|
|
|
elif key in controlnet_data: |
|
|
|
|
pass |
|
|
|
|
prefix = "" |
|
|
|
|
else: |
|
|
|
|
net = load_t2i_adapter(controlnet_data) |
|
|
|
|
if net is None: |
|
|
|
|
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path) |
|
|
|
|
return net |
|
|
|
|
|
|
|
|
|
context_dim = controlnet_data[key].shape[1] |
|
|
|
|
|
|
|
|
|
use_fp16 = False |
|
|
|
|
if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16: |
|
|
|
|
use_fp16 = True |
|
|
|
|
|
|
|
|
|
if context_dim == 768: |
|
|
|
|
#SD1.x |
|
|
|
|
control_model = cldm.ControlNet(image_size=32, |
|
|
|
|
in_channels=4, |
|
|
|
|
hint_channels=3, |
|
|
|
|
model_channels=320, |
|
|
|
|
attention_resolutions=[ 4, 2, 1 ], |
|
|
|
|
num_res_blocks=2, |
|
|
|
|
channel_mult=[ 1, 2, 4, 4 ], |
|
|
|
|
num_heads=8, |
|
|
|
|
use_spatial_transformer=True, |
|
|
|
|
transformer_depth=1, |
|
|
|
|
context_dim=context_dim, |
|
|
|
|
use_checkpoint=False, |
|
|
|
|
legacy=False, |
|
|
|
|
use_fp16=use_fp16) |
|
|
|
|
else: |
|
|
|
|
#SD2.x |
|
|
|
|
control_model = cldm.ControlNet(image_size=32, |
|
|
|
|
in_channels=4, |
|
|
|
|
hint_channels=3, |
|
|
|
|
model_channels=320, |
|
|
|
|
attention_resolutions=[ 4, 2, 1 ], |
|
|
|
|
num_res_blocks=2, |
|
|
|
|
channel_mult=[ 1, 2, 4, 4 ], |
|
|
|
|
num_head_channels=64, |
|
|
|
|
use_spatial_transformer=True, |
|
|
|
|
use_linear_in_transformer=True, |
|
|
|
|
transformer_depth=1, |
|
|
|
|
context_dim=context_dim, |
|
|
|
|
use_checkpoint=False, |
|
|
|
|
legacy=False, |
|
|
|
|
use_fp16=use_fp16) |
|
|
|
|
use_fp16 = model_management.should_use_fp16() |
|
|
|
|
|
|
|
|
|
controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config |
|
|
|
|
controlnet_config.pop("out_channels") |
|
|
|
|
controlnet_config["hint_channels"] = 3 |
|
|
|
|
control_model = cldm.ControlNet(**controlnet_config) |
|
|
|
|
|
|
|
|
|
if pth: |
|
|
|
|
if 'difference' in controlnet_data: |
|
|
|
|
if model is not None: |
|
|
|
@ -823,9 +788,10 @@ def load_controlnet(ckpt_path, model=None):
|
|
|
|
|
pass |
|
|
|
|
w = WeightsLoader() |
|
|
|
|
w.control_model = control_model |
|
|
|
|
w.load_state_dict(controlnet_data, strict=False) |
|
|
|
|
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) |
|
|
|
|
else: |
|
|
|
|
control_model.load_state_dict(controlnet_data, strict=False) |
|
|
|
|
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) |
|
|
|
|
print(missing, unexpected) |
|
|
|
|
|
|
|
|
|
if use_fp16: |
|
|
|
|
control_model = control_model.half() |
|
|
|
@ -850,10 +816,10 @@ class T2IAdapter:
|
|
|
|
|
self.cond_hint_original = None |
|
|
|
|
self.cond_hint = None |
|
|
|
|
|
|
|
|
|
def get_control(self, x_noisy, t, cond_txt, batched_number): |
|
|
|
|
def get_control(self, x_noisy, t, cond, batched_number): |
|
|
|
|
control_prev = None |
|
|
|
|
if self.previous_controlnet is not None: |
|
|
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt, batched_number) |
|
|
|
|
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
|
|
|
|
|
|
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
|
|
|
if self.cond_hint is not None: |
|
|
|
@ -929,12 +895,21 @@ class T2IAdapter:
|
|
|
|
|
|
|
|
|
|
def load_t2i_adapter(t2i_data): |
|
|
|
|
keys = t2i_data.keys() |
|
|
|
|
if 'adapter' in keys: |
|
|
|
|
t2i_data = t2i_data['adapter'] |
|
|
|
|
keys = t2i_data.keys() |
|
|
|
|
if "body.0.in_conv.weight" in keys: |
|
|
|
|
cin = t2i_data['body.0.in_conv.weight'].shape[1] |
|
|
|
|
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) |
|
|
|
|
elif 'conv_in.weight' in keys: |
|
|
|
|
cin = t2i_data['conv_in.weight'].shape[1] |
|
|
|
|
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False) |
|
|
|
|
channel = t2i_data['conv_in.weight'].shape[0] |
|
|
|
|
ksize = t2i_data['body.0.block2.weight'].shape[2] |
|
|
|
|
use_conv = False |
|
|
|
|
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) |
|
|
|
|
if len(down_opts) > 0: |
|
|
|
|
use_conv = True |
|
|
|
|
model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv) |
|
|
|
|
else: |
|
|
|
|
return None |
|
|
|
|
model_ad.load_state_dict(t2i_data) |
|
|
|
@ -1010,17 +985,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|
|
|
|
class WeightsLoader(torch.nn.Module): |
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
w = WeightsLoader() |
|
|
|
|
load_state_dict_to = [] |
|
|
|
|
if output_vae: |
|
|
|
|
vae = VAE(scale_factor=scale_factor, config=vae_config) |
|
|
|
|
w.first_stage_model = vae.first_stage_model |
|
|
|
|
load_state_dict_to = [w] |
|
|
|
|
|
|
|
|
|
if output_clip: |
|
|
|
|
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
|
|
|
|
w.cond_stage_model = clip.cond_stage_model |
|
|
|
|
load_state_dict_to = [w] |
|
|
|
|
if state_dict is None: |
|
|
|
|
state_dict = utils.load_torch_file(ckpt_path) |
|
|
|
|
|
|
|
|
|
if config['model']["target"].endswith("LatentInpaintDiffusion"): |
|
|
|
|
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction) |
|
|
|
@ -1029,13 +995,33 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|
|
|
|
else: |
|
|
|
|
model = model_base.BaseModel(unet_config, v_prediction=v_prediction) |
|
|
|
|
|
|
|
|
|
if state_dict is None: |
|
|
|
|
state_dict = utils.load_torch_file(ckpt_path) |
|
|
|
|
model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to) |
|
|
|
|
|
|
|
|
|
if fp16: |
|
|
|
|
model = model.half() |
|
|
|
|
|
|
|
|
|
model.load_model_weights(state_dict, "model.diffusion_model.") |
|
|
|
|
|
|
|
|
|
if output_vae: |
|
|
|
|
w = WeightsLoader() |
|
|
|
|
vae = VAE(scale_factor=scale_factor, config=vae_config) |
|
|
|
|
w.first_stage_model = vae.first_stage_model |
|
|
|
|
load_model_weights(w, state_dict) |
|
|
|
|
|
|
|
|
|
if output_clip: |
|
|
|
|
w = WeightsLoader() |
|
|
|
|
class EmptyClass: |
|
|
|
|
pass |
|
|
|
|
clip_target = EmptyClass() |
|
|
|
|
clip_target.params = clip_config["params"] |
|
|
|
|
if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"): |
|
|
|
|
clip_target.clip = sd2_clip.SD2ClipModel |
|
|
|
|
clip_target.tokenizer = sd2_clip.SD2Tokenizer |
|
|
|
|
elif clip_config["target"].endswith("FrozenCLIPEmbedder"): |
|
|
|
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
|
|
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
|
|
|
w.cond_stage_model = clip.cond_stage_model |
|
|
|
|
load_clip_weights(w, state_dict) |
|
|
|
|
|
|
|
|
|
return (ModelPatcher(model), clip, vae) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -1045,139 +1031,41 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|
|
|
|
clip = None |
|
|
|
|
clipvision = None |
|
|
|
|
vae = None |
|
|
|
|
model = None |
|
|
|
|
clip_target = None |
|
|
|
|
|
|
|
|
|
fp16 = model_management.should_use_fp16() |
|
|
|
|
|
|
|
|
|
class WeightsLoader(torch.nn.Module): |
|
|
|
|
pass |
|
|
|
|
|
|
|
|
|
w = WeightsLoader() |
|
|
|
|
load_state_dict_to = [] |
|
|
|
|
if output_vae: |
|
|
|
|
vae = VAE() |
|
|
|
|
w.first_stage_model = vae.first_stage_model |
|
|
|
|
load_state_dict_to = [w] |
|
|
|
|
|
|
|
|
|
if output_clip: |
|
|
|
|
clip_config = {} |
|
|
|
|
if "cond_stage_model.model.transformer.resblocks.22.attn.out_proj.weight" in sd_keys: |
|
|
|
|
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder' |
|
|
|
|
else: |
|
|
|
|
clip_config['target'] = 'comfy.ldm.modules.encoders.modules.FrozenCLIPEmbedder' |
|
|
|
|
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
|
|
|
|
w.cond_stage_model = clip.cond_stage_model |
|
|
|
|
load_state_dict_to = [w] |
|
|
|
|
|
|
|
|
|
clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" |
|
|
|
|
noise_aug_config = None |
|
|
|
|
if clipvision_key in sd_keys: |
|
|
|
|
size = sd[clipvision_key].shape[1] |
|
|
|
|
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16) |
|
|
|
|
if model_config is None: |
|
|
|
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) |
|
|
|
|
|
|
|
|
|
if model_config.clip_vision_prefix is not None: |
|
|
|
|
if output_clipvision: |
|
|
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd) |
|
|
|
|
|
|
|
|
|
noise_aug_key = "noise_augmentor.betas" |
|
|
|
|
if noise_aug_key in sd_keys: |
|
|
|
|
noise_aug_config = {} |
|
|
|
|
params = {} |
|
|
|
|
noise_schedule_config = {} |
|
|
|
|
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0] |
|
|
|
|
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2" |
|
|
|
|
params["noise_schedule_config"] = noise_schedule_config |
|
|
|
|
noise_aug_config['target'] = "comfy.ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation" |
|
|
|
|
if size == 1280: #h |
|
|
|
|
params["timestep_dim"] = 1024 |
|
|
|
|
elif size == 1024: #l |
|
|
|
|
params["timestep_dim"] = 768 |
|
|
|
|
noise_aug_config['params'] = params |
|
|
|
|
|
|
|
|
|
sd_config = { |
|
|
|
|
"linear_start": 0.00085, |
|
|
|
|
"linear_end": 0.012, |
|
|
|
|
"num_timesteps_cond": 1, |
|
|
|
|
"log_every_t": 200, |
|
|
|
|
"timesteps": 1000, |
|
|
|
|
"first_stage_key": "jpg", |
|
|
|
|
"cond_stage_key": "txt", |
|
|
|
|
"image_size": 64, |
|
|
|
|
"channels": 4, |
|
|
|
|
"cond_stage_trainable": False, |
|
|
|
|
"monitor": "val/loss_simple_ema", |
|
|
|
|
"scale_factor": 0.18215, |
|
|
|
|
"use_ema": False, |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
unet_config = { |
|
|
|
|
"use_checkpoint": False, |
|
|
|
|
"image_size": 32, |
|
|
|
|
"out_channels": 4, |
|
|
|
|
"attention_resolutions": [ |
|
|
|
|
4, |
|
|
|
|
2, |
|
|
|
|
1 |
|
|
|
|
], |
|
|
|
|
"num_res_blocks": 2, |
|
|
|
|
"channel_mult": [ |
|
|
|
|
1, |
|
|
|
|
2, |
|
|
|
|
4, |
|
|
|
|
4 |
|
|
|
|
], |
|
|
|
|
"use_spatial_transformer": True, |
|
|
|
|
"transformer_depth": 1, |
|
|
|
|
"legacy": False |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if len(sd['model.diffusion_model.input_blocks.4.1.proj_in.weight'].shape) == 2: |
|
|
|
|
unet_config['use_linear_in_transformer'] = True |
|
|
|
|
|
|
|
|
|
unet_config["use_fp16"] = fp16 |
|
|
|
|
unet_config["model_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[0] |
|
|
|
|
unet_config["in_channels"] = sd['model.diffusion_model.input_blocks.0.0.weight'].shape[1] |
|
|
|
|
unet_config["context_dim"] = sd['model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight'].shape[1] |
|
|
|
|
|
|
|
|
|
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} |
|
|
|
|
|
|
|
|
|
unclip_model = False |
|
|
|
|
inpaint_model = False |
|
|
|
|
if noise_aug_config is not None: #SD2.x unclip model |
|
|
|
|
sd_config["noise_aug_config"] = noise_aug_config |
|
|
|
|
sd_config["image_size"] = 96 |
|
|
|
|
sd_config["embedding_dropout"] = 0.25 |
|
|
|
|
sd_config["conditioning_key"] = 'crossattn-adm' |
|
|
|
|
unclip_model = True |
|
|
|
|
elif unet_config["in_channels"] > 4: #inpainting model |
|
|
|
|
sd_config["conditioning_key"] = "hybrid" |
|
|
|
|
sd_config["finetune_keys"] = None |
|
|
|
|
inpaint_model = True |
|
|
|
|
else: |
|
|
|
|
sd_config["conditioning_key"] = "crossattn" |
|
|
|
|
|
|
|
|
|
if unet_config["context_dim"] == 768: |
|
|
|
|
unet_config["num_heads"] = 8 #SD1.x |
|
|
|
|
else: |
|
|
|
|
unet_config["num_head_channels"] = 64 #SD2.x |
|
|
|
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix) |
|
|
|
|
|
|
|
|
|
unclip = 'model.diffusion_model.label_emb.0.0.weight' |
|
|
|
|
if unclip in sd_keys: |
|
|
|
|
unet_config["num_classes"] = "sequential" |
|
|
|
|
unet_config["adm_in_channels"] = sd[unclip].shape[1] |
|
|
|
|
model = model_config.get_model(sd) |
|
|
|
|
model.load_model_weights(sd, "model.diffusion_model.") |
|
|
|
|
|
|
|
|
|
v_prediction = False |
|
|
|
|
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction |
|
|
|
|
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias" |
|
|
|
|
out = sd[k] |
|
|
|
|
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. |
|
|
|
|
v_prediction = True |
|
|
|
|
sd_config["parameterization"] = 'v' |
|
|
|
|
if output_vae: |
|
|
|
|
vae = VAE(scale_factor=model_config.vae_scale_factor) |
|
|
|
|
w = WeightsLoader() |
|
|
|
|
w.first_stage_model = vae.first_stage_model |
|
|
|
|
load_model_weights(w, sd) |
|
|
|
|
|
|
|
|
|
if inpaint_model: |
|
|
|
|
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction) |
|
|
|
|
elif unclip_model: |
|
|
|
|
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction) |
|
|
|
|
else: |
|
|
|
|
model = model_base.BaseModel(unet_config, v_prediction=v_prediction) |
|
|
|
|
if output_clip: |
|
|
|
|
w = WeightsLoader() |
|
|
|
|
clip_target = model_config.clip_target() |
|
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory) |
|
|
|
|
w.cond_stage_model = clip.cond_stage_model |
|
|
|
|
sd = model_config.process_clip_state_dict(sd) |
|
|
|
|
load_model_weights(w, sd) |
|
|
|
|
|
|
|
|
|
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) |
|
|
|
|
left_over = sd.keys() |
|
|
|
|
if len(left_over) > 0: |
|
|
|
|
print("left over keys:", left_over) |
|
|
|
|
|
|
|
|
|
return (ModelPatcher(model), clip, vae, clipvision) |
|
|
|
|