Browse Source

Move text_projection to base clip model.

pull/1340/head
comfyanonymous 1 year ago
parent
commit
ec96f6d03a
  1. 3
      comfy/sd.py
  2. 8
      comfy/sd1_clip.py
  3. 2
      comfy/sd2_clip_config.json
  4. 6
      comfy/sdxl_clip.py

3
comfy/sd.py

@ -564,9 +564,6 @@ class CLIP:
n.layer_idx = self.layer_idx
return n
def load_from_state_dict(self, sd):
self.cond_stage_model.load_sd(sd)
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)

8
comfy/sd1_clip.py

@ -66,7 +66,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer = layer
self.layer_idx = None
self.empty_tokens = [[49406] + [49407] * 76]
self.text_projection = None
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = True
if layer == "hidden":
assert layer_idx is not None
@ -163,6 +165,10 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
return self(tokens)
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return self.transformer.load_state_dict(sd, strict=False)
def parse_parentheses(string):

2
comfy/sd2_clip_config.json

@ -17,7 +17,7 @@
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"projection_dim": 512,
"projection_dim": 1024,
"torch_dtype": "float32",
"vocab_size": 49408
}

6
comfy/sdxl_clip.py

@ -11,15 +11,9 @@ class SDXLClipG(sd1_clip.SD1ClipModel):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, textmodel_path=textmodel_path, dtype=dtype)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
self.text_projection = torch.nn.Parameter(torch.empty(1280, 1280))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = False
def load_sd(self, sd):
if "text_projection" in sd:
self.text_projection[:] = sd.pop("text_projection")
if "text_projection.weight" in sd:
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
return super().load_sd(sd)
class SDXLClipGTokenizer(sd1_clip.SD1Tokenizer):

Loading…
Cancel
Save