diff --git a/comfy/gligen.py b/comfy/gligen.py index 71892dfb..59252276 100644 --- a/comfy/gligen.py +++ b/comfy/gligen.py @@ -2,7 +2,8 @@ import torch from torch import nn from .ldm.modules.attention import CrossAttention from inspect import isfunction - +import comfy.ops +ops = comfy.ops.manual_cast def exists(val): return val is not None @@ -22,7 +23,7 @@ def default(val, d): class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() - self.proj = nn.Linear(dim_in, dim_out * 2) + self.proj = ops.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) @@ -35,14 +36,14 @@ class FeedForward(nn.Module): inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( - nn.Linear(dim, inner_dim), + ops.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), - nn.Linear(inner_dim, dim_out) + ops.Linear(inner_dim, dim_out) ) def forward(self, x): @@ -57,11 +58,12 @@ class GatedCrossAttentionDense(nn.Module): query_dim=query_dim, context_dim=context_dim, heads=n_heads, - dim_head=d_head) + dim_head=d_head, + operations=ops) self.ff = FeedForward(query_dim, glu=True) - self.norm1 = nn.LayerNorm(query_dim) - self.norm2 = nn.LayerNorm(query_dim) + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) @@ -87,17 +89,18 @@ class GatedSelfAttentionDense(nn.Module): # we need a linear projection since we need cat visual feature and obj # feature - self.linear = nn.Linear(context_dim, query_dim) + self.linear = ops.Linear(context_dim, query_dim) self.attn = CrossAttention( query_dim=query_dim, context_dim=query_dim, heads=n_heads, - dim_head=d_head) + dim_head=d_head, + operations=ops) self.ff = FeedForward(query_dim, glu=True) - self.norm1 = nn.LayerNorm(query_dim) - self.norm2 = nn.LayerNorm(query_dim) + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) @@ -126,14 +129,14 @@ class GatedSelfAttentionDense2(nn.Module): # we need a linear projection since we need cat visual feature and obj # feature - self.linear = nn.Linear(context_dim, query_dim) + self.linear = ops.Linear(context_dim, query_dim) self.attn = CrossAttention( - query_dim=query_dim, context_dim=query_dim, dim_head=d_head) + query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops) self.ff = FeedForward(query_dim, glu=True) - self.norm1 = nn.LayerNorm(query_dim) - self.norm2 = nn.LayerNorm(query_dim) + self.norm1 = ops.LayerNorm(query_dim) + self.norm2 = ops.LayerNorm(query_dim) self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.))) self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.))) @@ -201,11 +204,11 @@ class PositionNet(nn.Module): self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy self.linears = nn.Sequential( - nn.Linear(self.in_dim + self.position_dim, 512), + ops.Linear(self.in_dim + self.position_dim, 512), nn.SiLU(), - nn.Linear(512, 512), + ops.Linear(512, 512), nn.SiLU(), - nn.Linear(512, out_dim), + ops.Linear(512, out_dim), ) self.null_positive_feature = torch.nn.Parameter( @@ -215,16 +218,15 @@ class PositionNet(nn.Module): def forward(self, boxes, masks, positive_embeddings): B, N, _ = boxes.shape - dtype = self.linears[0].weight.dtype - masks = masks.unsqueeze(-1).to(dtype) - positive_embeddings = positive_embeddings.to(dtype) + masks = masks.unsqueeze(-1) + positive_embeddings = positive_embeddings # embedding position (it may includes padding as placeholder) - xyxy_embedding = self.fourier_embedder(boxes.to(dtype)) # B*N*4 --> B*N*C + xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C # learnable null embedding - positive_null = self.null_positive_feature.view(1, 1, -1) - xyxy_null = self.null_position_feature.view(1, 1, -1) + positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) + xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1) # replace padding with learnable null embedding positive_embeddings = positive_embeddings * \ @@ -251,7 +253,7 @@ class Gligen(nn.Module): def func(x, extra_options): key = extra_options["transformer_index"] module = self.module_list[key] - return module(x, objs) + return module(x, objs.to(device=x.device, dtype=x.dtype)) return func def set_position(self, latent_image_shape, position_params, device):