|
|
|
@ -581,10 +581,7 @@ class VAE:
|
|
|
|
|
samples = samples.cpu() |
|
|
|
|
return samples |
|
|
|
|
|
|
|
|
|
def resize_image_to(tensor, target_latent_tensor, batched_number): |
|
|
|
|
tensor = utils.common_upscale(tensor, target_latent_tensor.shape[3] * 8, target_latent_tensor.shape[2] * 8, 'nearest-exact', "center") |
|
|
|
|
target_batch_size = target_latent_tensor.shape[0] |
|
|
|
|
|
|
|
|
|
def broadcast_image_to(tensor, target_batch_size, batched_number): |
|
|
|
|
current_batch_size = tensor.shape[0] |
|
|
|
|
print(current_batch_size, target_batch_size) |
|
|
|
|
if current_batch_size == 1: |
|
|
|
@ -623,7 +620,9 @@ class ControlNet:
|
|
|
|
|
if self.cond_hint is not None: |
|
|
|
|
del self.cond_hint |
|
|
|
|
self.cond_hint = None |
|
|
|
|
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).to(self.control_model.dtype).to(self.device) |
|
|
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device) |
|
|
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
|
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
|
|
|
|
|
|
if self.control_model.dtype == torch.float16: |
|
|
|
|
precision_scope = torch.autocast |
|
|
|
@ -794,10 +793,14 @@ class T2IAdapter:
|
|
|
|
|
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
|
|
|
|
if self.cond_hint is not None: |
|
|
|
|
del self.cond_hint |
|
|
|
|
self.control_input = None |
|
|
|
|
self.cond_hint = None |
|
|
|
|
self.cond_hint = resize_image_to(self.cond_hint_original, x_noisy, batched_number).float().to(self.device) |
|
|
|
|
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device) |
|
|
|
|
if self.channels_in == 1 and self.cond_hint.shape[1] > 1: |
|
|
|
|
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) |
|
|
|
|
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
|
|
|
|
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
|
|
|
|
if self.control_input is None: |
|
|
|
|
self.t2i_model.to(self.device) |
|
|
|
|
self.control_input = self.t2i_model(self.cond_hint) |
|
|
|
|
self.t2i_model.cpu() |
|
|
|
|