|
|
|
@ -150,10 +150,10 @@ class StableCascadeSampling(ModelSamplingDiscrete):
|
|
|
|
|
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 |
|
|
|
|
|
|
|
|
|
#This part is just for compatibility with some schedulers in the codebase |
|
|
|
|
self.num_timesteps = 1000 |
|
|
|
|
self.num_timesteps = 10000 |
|
|
|
|
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32) |
|
|
|
|
for x in range(self.num_timesteps): |
|
|
|
|
t = x / self.num_timesteps |
|
|
|
|
t = (x + 1) / self.num_timesteps |
|
|
|
|
sigmas[x] = self.sigma(t) |
|
|
|
|
|
|
|
|
|
self.set_sigmas(sigmas) |
|
|
|
|