|
|
|
@ -534,19 +534,13 @@ class KSAMPLER(Sampler):
|
|
|
|
|
else: |
|
|
|
|
model_k.noise = noise |
|
|
|
|
|
|
|
|
|
if self.max_denoise(model_wrap, sigmas): |
|
|
|
|
noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0) |
|
|
|
|
else: |
|
|
|
|
noise = noise * sigmas[0] |
|
|
|
|
noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas)) |
|
|
|
|
|
|
|
|
|
k_callback = None |
|
|
|
|
total_steps = len(sigmas) - 1 |
|
|
|
|
if callback is not None: |
|
|
|
|
k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps) |
|
|
|
|
|
|
|
|
|
if latent_image is not None: |
|
|
|
|
noise += latent_image |
|
|
|
|
|
|
|
|
|
samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options) |
|
|
|
|
return samples |
|
|
|
|
|
|
|
|
|