|
|
|
@ -343,17 +343,24 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
|
|
|
|
return embed_out |
|
|
|
|
|
|
|
|
|
class SDTokenizer: |
|
|
|
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l'): |
|
|
|
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True): |
|
|
|
|
if tokenizer_path is None: |
|
|
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") |
|
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) |
|
|
|
|
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) |
|
|
|
|
self.max_length = max_length |
|
|
|
|
self.max_tokens_per_section = self.max_length - 2 |
|
|
|
|
|
|
|
|
|
empty = self.tokenizer('')["input_ids"] |
|
|
|
|
self.start_token = empty[0] |
|
|
|
|
self.end_token = empty[1] |
|
|
|
|
if has_start_token: |
|
|
|
|
self.tokens_start = 1 |
|
|
|
|
self.start_token = empty[0] |
|
|
|
|
self.end_token = empty[1] |
|
|
|
|
else: |
|
|
|
|
self.tokens_start = 0 |
|
|
|
|
self.start_token = None |
|
|
|
|
self.end_token = empty[0] |
|
|
|
|
self.pad_with_end = pad_with_end |
|
|
|
|
self.pad_to_max_length = pad_to_max_length |
|
|
|
|
|
|
|
|
|
vocab = self.tokenizer.get_vocab() |
|
|
|
|
self.inv_vocab = {v: k for k, v in vocab.items()} |
|
|
|
|
self.embedding_directory = embedding_directory |
|
|
|
@ -414,11 +421,13 @@ class SDTokenizer:
|
|
|
|
|
else: |
|
|
|
|
continue |
|
|
|
|
#parse word |
|
|
|
|
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][1:-1]]) |
|
|
|
|
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) |
|
|
|
|
|
|
|
|
|
#reshape token array to CLIP input size |
|
|
|
|
batched_tokens = [] |
|
|
|
|
batch = [(self.start_token, 1.0, 0)] |
|
|
|
|
batch = [] |
|
|
|
|
if self.start_token is not None: |
|
|
|
|
batch.append((self.start_token, 1.0, 0)) |
|
|
|
|
batched_tokens.append(batch) |
|
|
|
|
for i, t_group in enumerate(tokens): |
|
|
|
|
#determine if we're going to try and keep the tokens in a single batch |
|
|
|
@ -435,16 +444,21 @@ class SDTokenizer:
|
|
|
|
|
#add end token and pad |
|
|
|
|
else: |
|
|
|
|
batch.append((self.end_token, 1.0, 0)) |
|
|
|
|
batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) |
|
|
|
|
if self.pad_to_max_length: |
|
|
|
|
batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) |
|
|
|
|
#start new batch |
|
|
|
|
batch = [(self.start_token, 1.0, 0)] |
|
|
|
|
batch = [] |
|
|
|
|
if self.start_token is not None: |
|
|
|
|
batch.append((self.start_token, 1.0, 0)) |
|
|
|
|
batched_tokens.append(batch) |
|
|
|
|
else: |
|
|
|
|
batch.extend([(t,w,i+1) for t,w in t_group]) |
|
|
|
|
t_group = [] |
|
|
|
|
|
|
|
|
|
#fill last batch |
|
|
|
|
batch.extend([(self.end_token, 1.0, 0)] + [(pad_token, 1.0, 0)] * (self.max_length - len(batch) - 1)) |
|
|
|
|
batch.append((self.end_token, 1.0, 0)) |
|
|
|
|
if self.pad_to_max_length: |
|
|
|
|
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) |
|
|
|
|
|
|
|
|
|
if not return_word_ids: |
|
|
|
|
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] |
|
|
|
|