diff --git a/comfy/lora.py b/comfy/lora.py index 637380d5..096285bb 100644 --- a/comfy/lora.py +++ b/comfy/lora.py @@ -21,6 +21,12 @@ def load_lora(lora, to_load): alpha = lora[alpha_name].item() loaded_keys.add(alpha_name) + dora_scale_name = "{}.dora_scale".format(x) + dora_scale = None + if dora_scale_name in lora.keys(): + dora_scale = lora[dora_scale_name] + loaded_keys.add(dora_scale_name) + regular_lora = "{}.lora_up.weight".format(x) diffusers_lora = "{}_lora.up.weight".format(x) transformers_lora = "{}.lora_linear_layer.up.weight".format(x) @@ -44,7 +50,7 @@ def load_lora(lora, to_load): if mid_name is not None and mid_name in lora.keys(): mid = lora[mid_name] loaded_keys.add(mid_name) - patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid)) + patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale)) loaded_keys.add(A_name) loaded_keys.add(B_name) @@ -65,7 +71,7 @@ def load_lora(lora, to_load): loaded_keys.add(hada_t1_name) loaded_keys.add(hada_t2_name) - patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)) + patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) loaded_keys.add(hada_w1_a_name) loaded_keys.add(hada_w1_b_name) loaded_keys.add(hada_w2_a_name) @@ -117,7 +123,7 @@ def load_lora(lora, to_load): loaded_keys.add(lokr_t2_name) if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): - patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)) + patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) #glora a1_name = "{}.a1.weight".format(x) @@ -125,7 +131,7 @@ def load_lora(lora, to_load): b1_name = "{}.b1.weight".format(x) b2_name = "{}.b2.weight".format(x) if a1_name in lora: - patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha)) + patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) loaded_keys.add(a1_name) loaded_keys.add(a2_name) loaded_keys.add(b1_name) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index aa78302d..8dda84cf 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -7,6 +7,18 @@ import uuid import comfy.utils import comfy.model_management +def apply_weight_decompose(dora_scale, weight): + weight_norm = ( + weight.transpose(0, 1) + .reshape(weight.shape[1], -1) + .norm(dim=1, keepdim=True) + .reshape(weight.shape[1], *[1] * (weight.dim() - 1)) + .transpose(0, 1) + ) + + return weight * (dora_scale / weight_norm) + + class ModelPatcher: def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False): self.size = size @@ -309,6 +321,7 @@ class ModelPatcher: elif patch_type == "lora": #lora/locon mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) + dora_scale = v[4] if v[2] is not None: alpha *= v[2] / mat2.shape[0] if v[3] is not None: @@ -318,6 +331,8 @@ class ModelPatcher: mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) try: weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype) + if dora_scale is not None: + weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "lokr": @@ -328,6 +343,7 @@ class ModelPatcher: w2_a = v[5] w2_b = v[6] t2 = v[7] + dora_scale = v[8] dim = None if w1 is None: @@ -357,6 +373,8 @@ class ModelPatcher: try: weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) + if dora_scale is not None: + weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "loha": @@ -366,6 +384,7 @@ class ModelPatcher: alpha *= v[2] / w1b.shape[0] w2a = v[3] w2b = v[4] + dora_scale = v[7] if v[5] is not None: #cp decomposition t1 = v[5] t2 = v[6] @@ -386,12 +405,16 @@ class ModelPatcher: try: weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) + if dora_scale is not None: + weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "glora": if v[4] is not None: alpha *= v[4] / v[0].shape[0] + dora_scale = v[5] + a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) @@ -399,6 +422,8 @@ class ModelPatcher: try: weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype) + if dora_scale is not None: + weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) else: