|
|
|
@ -9,7 +9,7 @@ import math
|
|
|
|
|
import time |
|
|
|
|
import random |
|
|
|
|
|
|
|
|
|
from PIL import Image, ImageOps |
|
|
|
|
from PIL import Image, ImageOps, ImageSequence |
|
|
|
|
from PIL.PngImagePlugin import PngInfo |
|
|
|
|
import numpy as np |
|
|
|
|
import safetensors.torch |
|
|
|
@ -1410,17 +1410,30 @@ class LoadImage:
|
|
|
|
|
FUNCTION = "load_image" |
|
|
|
|
def load_image(self, image): |
|
|
|
|
image_path = folder_paths.get_annotated_filepath(image) |
|
|
|
|
i = Image.open(image_path) |
|
|
|
|
i = ImageOps.exif_transpose(i) |
|
|
|
|
image = i.convert("RGB") |
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0 |
|
|
|
|
image = torch.from_numpy(image)[None,] |
|
|
|
|
if 'A' in i.getbands(): |
|
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 |
|
|
|
|
mask = 1. - torch.from_numpy(mask) |
|
|
|
|
img = Image.open(image_path) |
|
|
|
|
output_images = [] |
|
|
|
|
output_masks = [] |
|
|
|
|
for i in ImageSequence.Iterator(img): |
|
|
|
|
i = ImageOps.exif_transpose(i) |
|
|
|
|
image = i.convert("RGB") |
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0 |
|
|
|
|
image = torch.from_numpy(image)[None,] |
|
|
|
|
if 'A' in i.getbands(): |
|
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 |
|
|
|
|
mask = 1. - torch.from_numpy(mask) |
|
|
|
|
else: |
|
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") |
|
|
|
|
output_images.append(image) |
|
|
|
|
output_masks.append(mask.unsqueeze(0)) |
|
|
|
|
|
|
|
|
|
if len(output_images) > 1: |
|
|
|
|
output_image = torch.cat(output_images, dim=0) |
|
|
|
|
output_mask = torch.cat(output_masks, dim=0) |
|
|
|
|
else: |
|
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") |
|
|
|
|
return (image, mask.unsqueeze(0)) |
|
|
|
|
output_image = output_images[0] |
|
|
|
|
output_mask = output_masks[0] |
|
|
|
|
|
|
|
|
|
return (output_image, output_mask) |
|
|
|
|
|
|
|
|
|
@classmethod |
|
|
|
|
def IS_CHANGED(s, image): |
|
|
|
|