Browse Source

Hopefully fix a strange issue with xformers + lowvram.

pull/38/head
comfyanonymous 2 years ago
parent
commit
9502ee45c3
  1. 31
      comfy/ldm/modules/attention.py

31
comfy/ldm/modules/attention.py

@ -394,15 +394,6 @@ class CrossAttention(nn.Module):
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
import sys
if XFORMERS_IS_AVAILBLE == False:
if "--use-split-cross-attention" in sys.argv:
print("Using split optimization for cross attention")
CrossAttention = CrossAttentionDoggettx
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
CrossAttention = CrossAttentionBirchSan
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
@ -451,23 +442,27 @@ class MemoryEfficientCrossAttention(nn.Module):
)
return self.to_out(out)
import sys
if XFORMERS_IS_AVAILBLE == False:
if "--use-split-cross-attention" in sys.argv:
print("Using split optimization for cross attention")
CrossAttention = CrossAttentionDoggettx
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
CrossAttention = CrossAttentionBirchSan
else:
print("Using xformers cross attention")
CrossAttention = MemoryEfficientCrossAttention
class BasicTransformerBlock(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention
}
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False):
super().__init__()
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
assert attn_mode in self.ATTENTION_MODES
attn_cls = self.ATTENTION_MODES[attn_mode]
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)

Loading…
Cancel
Save