Browse Source

Merge remote-tracking branch 'upstream/master' into addBatchIndex

pull/421/head
flyingshutter 9 months ago
parent
commit
83adedaad0
  1. 2
      README.md
  2. 2
      comfy/clip_model.py
  3. 17
      comfy/controlnet.py
  4. 52
      comfy/gligen.py
  5. 38
      comfy/latent_formats.py
  6. 161
      comfy/ldm/cascade/common.py
  7. 258
      comfy/ldm/cascade/stage_a.py
  8. 257
      comfy/ldm/cascade/stage_b.py
  9. 271
      comfy/ldm/cascade/stage_c.py
  10. 95
      comfy/ldm/cascade/stage_c_coder.py
  11. 21
      comfy/ldm/modules/attention.py
  12. 61
      comfy/model_base.py
  13. 42
      comfy/model_detection.py
  14. 84
      comfy/model_management.py
  15. 53
      comfy/model_sampling.py
  16. 49
      comfy/ops.py
  17. 3
      comfy/samplers.py
  18. 126
      comfy/sd.py
  19. 4
      comfy/sd1_clip.py
  20. 22
      comfy/sdxl_clip.py
  21. 94
      comfy/supported_models.py
  22. 12
      comfy/supported_models_base.py
  23. 2
      comfy/utils.py
  24. 20
      comfy_extras/nodes_images.py
  25. 35
      comfy_extras/nodes_model_advanced.py
  26. 109
      comfy_extras/nodes_stable_cascade.py
  27. 49
      custom_nodes/websocket_image_save.py.disabled
  28. 14
      execution.py
  29. 35
      nodes.py
  30. 1
      web/extensions/core/widgetInputs.js
  31. 4
      web/scripts/pnginfo.js
  32. 7
      web/style.css

2
README.md

@ -11,7 +11,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/) and [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- Fully supports SD1.x, SD2.x, [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/) and [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Command line option: ```--lowvram``` to make it work on GPUs with less than 3GB vram (enabled automatically on GPUs with low vram)

2
comfy/clip_model.py

@ -97,7 +97,7 @@ class CLIPTextModel_(torch.nn.Module):
x = self.embeddings(input_tokens)
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).unsqueeze(1).unsqueeze(1).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)

17
comfy/controlnet.py

@ -318,9 +318,10 @@ def load_controlnet(ckpt_path, model=None):
return ControlLora(controlnet_data)
controlnet_config = None
supported_inference_dtypes = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
@ -380,12 +381,20 @@ def load_controlnet(ckpt_path, model=None):
return net
if controlnet_config is None:
unet_dtype = comfy.model_management.unet_dtype()
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
supported_inference_dtypes = model_config.supported_inference_dtypes
controlnet_config = model_config.unet_config
load_device = comfy.model_management.get_torch_device()
if supported_inference_dtypes is None:
unet_dtype = comfy.model_management.unet_dtype()
else:
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
controlnet_config["operations"] = comfy.ops.manual_cast
controlnet_config["dtype"] = unet_dtype
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)

52
comfy/gligen.py

@ -2,7 +2,8 @@ import torch
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
import comfy.ops
ops = comfy.ops.manual_cast
def exists(val):
return val is not None
@ -22,7 +23,7 @@ def default(val, d):
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
self.proj = ops.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
@ -35,14 +36,14 @@ class FeedForward(nn.Module):
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
ops.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
ops.Linear(inner_dim, dim_out)
)
def forward(self, x):
@ -57,11 +58,12 @@ class GatedCrossAttentionDense(nn.Module):
query_dim=query_dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -87,17 +89,18 @@ class GatedSelfAttentionDense(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=query_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -126,14 +129,14 @@ class GatedSelfAttentionDense2(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim, context_dim=query_dim, dim_head=d_head)
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -201,11 +204,11 @@ class PositionNet(nn.Module):
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
self.linears = nn.Sequential(
nn.Linear(self.in_dim + self.position_dim, 512),
ops.Linear(self.in_dim + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
ops.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
ops.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(
@ -215,16 +218,15 @@ class PositionNet(nn.Module):
def forward(self, boxes, masks, positive_embeddings):
B, N, _ = boxes.shape
dtype = self.linears[0].weight.dtype
masks = masks.unsqueeze(-1).to(dtype)
positive_embeddings = positive_embeddings.to(dtype)
masks = masks.unsqueeze(-1)
positive_embeddings = positive_embeddings
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes.to(dtype)) # B*N*4 --> B*N*C
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
xyxy_null = self.null_position_feature.view(1, 1, -1)
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * \
@ -251,7 +253,7 @@ class Gligen(nn.Module):
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs)
return module(x, objs.to(device=x.device, dtype=x.dtype))
return func
def set_position(self, latent_image_shape, position_params, device):

38
comfy/latent_formats.py

@ -37,3 +37,41 @@ class SDXL(LatentFormat):
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333
self.latent_rgb_factors = [
[-0.2340, -0.3863, -0.3257],
[ 0.0994, 0.0885, -0.0908],
[-0.2833, -0.2349, -0.3741],
[ 0.2523, -0.0055, -0.1651]
]
class SC_Prior(LatentFormat):
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[-0.0326, -0.0204, -0.0127],
[-0.1592, -0.0427, 0.0216],
[ 0.0873, 0.0638, -0.0020],
[-0.0602, 0.0442, 0.1304],
[ 0.0800, -0.0313, -0.1796],
[-0.0810, -0.0638, -0.1581],
[ 0.1791, 0.1180, 0.0967],
[ 0.0740, 0.1416, 0.0432],
[-0.1745, -0.1888, -0.1373],
[ 0.2412, 0.1577, 0.0928],
[ 0.1908, 0.0998, 0.0682],
[ 0.0209, 0.0365, -0.0092],
[ 0.0448, -0.0650, -0.1728],
[-0.1658, -0.1045, -0.1308],
[ 0.0542, 0.1545, 0.1325],
[-0.0352, -0.1672, -0.2541]
]
class SC_B(LatentFormat):
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[ 0.1121, 0.2006, 0.1023],
[-0.2093, -0.0222, -0.0195],
[-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078]
]

161
comfy/ldm/cascade/common.py

@ -0,0 +1,161 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention
class Linear(torch.nn.Linear):
def reset_parameters(self):
return None
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
class OptimizedAttention(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.heads = nhead
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, q, k, v):
q = self.to_q(q)
k = self.to_k(k)
v = self.to_v(v)
out = optimized_attention(q, k, v, self.heads)
return self.out_proj(out)
class Attention2D(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
def forward(self, x, kv, self_attn=False):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
# x = self.attn(x, kv, kv, need_weights=False)[0]
x = self.attn(x, kv, kv)
x = x.permute(0, 2, 1).view(*orig_shape)
return x
def LayerNorm2d_op(operations):
class LayerNorm2d(operations.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return LayerNorm2d
class GlobalResponseNorm(nn.Module):
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
def __init__(self, dim, dtype=None, device=None):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
class ResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
super().__init__()
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
# self.depthwise = SAMBlock(c, num_heads, expansion)
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.channelwise = nn.Sequential(
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
nn.GELU(),
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
nn.Dropout(dropout),
operations.Linear(c * 4, c, dtype=dtype, device=device)
)
def forward(self, x, x_skip=None):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
class AttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
operations.Linear(c_cond, c, dtype=dtype, device=device)
)
def forward(self, x, kv):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class FeedForwardBlock(nn.Module):
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.channelwise = nn.Sequential(
operations.Linear(c, c * 4, dtype=dtype, device=device),
nn.GELU(),
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
nn.Dropout(dropout),
operations.Linear(c * 4, c, dtype=dtype, device=device)
)
def forward(self, x):
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
class TimestepBlock(nn.Module):
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
super().__init__()
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
self.conds = conds
for cname in conds:
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
def forward(self, x, t):
t = t.chunk(len(self.conds) + 1, dim=1)
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
for i, c in enumerate(self.conds):
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
a, b = a + ac, b + bc
return x * (1 + a) + b

258
comfy/ldm/cascade/stage_a.py

@ -0,0 +1,258 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
from torch import nn
from torch.autograd import Function
class vector_quantize(Function):
@staticmethod
def forward(ctx, x, codebook):
with torch.no_grad():
codebook_sqr = torch.sum(codebook ** 2, dim=1)
x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
_, indices = dist.min(dim=1)
ctx.save_for_backward(indices, codebook)
ctx.mark_non_differentiable(indices)
nn = torch.index_select(codebook, 0, indices)
return nn, indices
@staticmethod
def backward(ctx, grad_output, grad_indices):
grad_inputs, grad_codebook = None, None
if ctx.needs_input_grad[0]:
grad_inputs = grad_output.clone()
if ctx.needs_input_grad[1]:
# Gradient wrt. the codebook
indices, codebook = ctx.saved_tensors
grad_codebook = torch.zeros_like(codebook)
grad_codebook.index_add_(0, indices, grad_output)
return (grad_inputs, grad_codebook)
class VectorQuantize(nn.Module):
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
"""
Takes an input of variable size (as long as the last dimension matches the embedding size).
Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
with the same size as the input, vq and commitment components for the loss as a touple
in the second output and the indices of the quantized vectors in the third:
quantized, (vq_loss, commit_loss), indices
"""
super(VectorQuantize, self).__init__()
self.codebook = nn.Embedding(k, embedding_size)
self.codebook.weight.data.uniform_(-1./k, 1./k)
self.vq = vector_quantize.apply
self.ema_decay = ema_decay
self.ema_loss = ema_loss
if ema_loss:
self.register_buffer('ema_element_count', torch.ones(k))
self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
def _laplace_smoothing(self, x, epsilon):
n = torch.sum(x)
return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
def _updateEMA(self, z_e_x, indices):
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
elem_count = mask.sum(dim=0)
weight_sum = torch.mm(mask.t(), z_e_x)
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
def idx2vq(self, idx, dim=-1):
q_idx = self.codebook(idx)
if dim != -1:
q_idx = q_idx.movedim(-1, dim)
return q_idx
def forward(self, x, get_losses=True, dim=-1):
if dim != -1:
x = x.movedim(dim, -1)
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
vq_loss, commit_loss = None, None
if self.ema_loss and self.training:
self._updateEMA(z_e_x.detach(), indices.detach())
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
if get_losses:
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
z_q_x = z_q_x.view(x.shape)
if dim != -1:
z_q_x = z_q_x.movedim(-1, dim)
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
class ResBlock(nn.Module):
def __init__(self, c, c_hidden):
super().__init__()
# depthwise/attention
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1),
nn.Conv2d(c, c, kernel_size=3, groups=c)
)
# channelwise
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c, c_hidden),
nn.GELU(),
nn.Linear(c_hidden, c),
)
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
# Init weights
def _basic_init(module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def _norm(self, x, norm):
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
def forward(self, x):
mods = self.gammas
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
try:
x = x + self.depthwise(x_temp) * mods[2]
except: #operation not implemented for bf16
x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
x = x + self.depthwise[1](x_temp) * mods[2]
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
return x
class StageA(nn.Module):
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192,
scale_factor=0.43): # 0.3764
super().__init__()
self.c_latent = c_latent
self.scale_factor = scale_factor
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
# Encoder blocks
self.in_block = nn.Sequential(
nn.PixelUnshuffle(2),
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
)
down_blocks = []
for i in range(levels):
if i > 0:
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = ResBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block)
down_blocks.append(nn.Sequential(
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
))
self.down_blocks = nn.Sequential(*down_blocks)
self.down_blocks[0]
self.codebook_size = codebook_size
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
# Decoder blocks
up_blocks = [nn.Sequential(
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
)]
for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1):
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
up_blocks.append(block)
if i < levels - 1:
up_blocks.append(
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
padding=1))
self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential(
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
nn.PixelShuffle(2),
)
def encode(self, x, quantize=False):
x = self.in_block(x)
x = self.down_blocks(x)
if quantize:
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
else:
return x / self.scale_factor
def decode(self, x):
x = x * self.scale_factor
x = self.up_blocks(x)
x = self.out_block(x)
return x
def forward(self, x, quantize=False):
qe, x, _, vq_loss = self.encode(x, quantize)
x = self.decode(qe)
return x, vq_loss
class Discriminator(nn.Module):
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
super().__init__()
d = max(depth - 3, 3)
layers = [
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
nn.LeakyReLU(0.2),
]
for i in range(depth - 1):
c_in = c_hidden // (2 ** max((d - i), 0))
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
layers.append(nn.InstanceNorm2d(c_out))
layers.append(nn.LeakyReLU(0.2))
self.encoder = nn.Sequential(*layers)
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
self.logits = nn.Sigmoid()
def forward(self, x, cond=None):
x = self.encoder(x)
if cond is not None:
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
x = torch.cat([x, cond], dim=1)
x = self.shuffle(x)
x = self.logits(x)
return x

257
comfy/ldm/cascade/stage_b.py

@ -0,0 +1,257 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import math
import numpy as np
import torch
from torch import nn
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
class StageB(nn.Module):
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
super().__init__()
self.dtype = dtype
self.c_r = c_r
self.t_conds = t_conds
self.c_clip_seq = c_clip_seq
if not isinstance(dropout, list):
dropout = [dropout] * len(c_hidden)
if not isinstance(self_attn, list):
self_attn = [self_attn] * len(c_hidden)
# CONDITIONING
self.effnet_mapper = nn.Sequential(
operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
nn.GELU(),
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
)
self.pixels_mapper = nn.Sequential(
operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
nn.GELU(),
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
)
self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
)
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
if block_type == 'C':
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'A':
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'F':
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'T':
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
else:
raise Exception(f'Block type {block_type} not supported')
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
self.down_downscalers = nn.ModuleList()
self.down_repeat_mappers = nn.ModuleList()
for i in range(len(c_hidden)):
if i > 0:
self.down_downscalers.append(nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
))
else:
self.down_downscalers.append(nn.Identity())
down_block = nn.ModuleList()
for _ in range(blocks[0][i]):
for block_type in level_config[i]:
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
down_block.append(block)
self.down_blocks.append(down_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[0][i] - 1):
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
self.down_repeat_mappers.append(block_repeat_mappers)
# -- up blocks
self.up_blocks = nn.ModuleList()
self.up_upscalers = nn.ModuleList()
self.up_repeat_mappers = nn.ModuleList()
for i in reversed(range(len(c_hidden))):
if i > 0:
self.up_upscalers.append(nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
))
else:
self.up_upscalers.append(nn.Identity())
up_block = nn.ModuleList()
for j in range(blocks[1][::-1][i]):
for k, block_type in enumerate(level_config[i]):
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
self_attn=self_attn[i])
up_block.append(block)
self.up_blocks.append(up_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[1][::-1][i] - 1):
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
self.up_repeat_mappers.append(block_repeat_mappers)
# OUTPUT
self.clf = nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
nn.PixelShuffle(patch_size),
)
# --- WEIGHT INIT ---
# self.apply(self._init_weights) # General init
# nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
# nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
# nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
# nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
# nn.init.constant_(self.clf[1].weight, 0) # outputs
#
# # blocks
# for level_block in self.down_blocks + self.up_blocks:
# for block in level_block:
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
# elif isinstance(block, TimestepBlock):
# for layer in block.modules():
# if isinstance(layer, nn.Linear):
# nn.init.constant_(layer.weight, 0)
#
# def _init_weights(self, m):
# if isinstance(m, (nn.Conv2d, nn.Linear)):
# torch.nn.init.xavier_uniform_(m.weight)
# if m.bias is not None:
# nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def gen_c_embeddings(self, clip):
if len(clip.shape) == 2:
clip = clip.unsqueeze(1)
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
x = block(x)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
align_corners=True)
x = block(x, skip)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
return x
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
if pixels is None:
pixels = x.new_zeros(x.size(0), 3, 8, 8)
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
for c in self.t_conds:
t_cond = kwargs.get(c, torch.zeros_like(r))
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
clip = self.gen_c_embeddings(clip)
# Model Blocks
x = self.embedding(x)
x = x + self.effnet_mapper(
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
align_corners=True)
level_outputs = self._down_encode(x, r_embed, clip)
x = self._up_decode(level_outputs, r_embed, clip)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)

271
comfy/ldm/cascade/stage_c.py

@ -0,0 +1,271 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
from torch import nn
import numpy as np
import math
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
# from .controlnet import ControlNetDeliverer
class UpDownBlock2d(nn.Module):
def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
super().__init__()
assert mode in ['up', 'down']
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
align_corners=True) if enabled else nn.Identity()
mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class StageC(nn.Module):
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
dtype=None, device=None, operations=None):
super().__init__()
self.dtype = dtype
self.c_r = c_r
self.t_conds = t_conds
self.c_clip_seq = c_clip_seq
if not isinstance(dropout, list):
dropout = [dropout] * len(c_hidden)
if not isinstance(self_attn, list):
self_attn = [self_attn] * len(c_hidden)
# CONDITIONING
self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
)
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
if block_type == 'C':
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'A':
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'F':
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
elif block_type == 'T':
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
else:
raise Exception(f'Block type {block_type} not supported')
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
self.down_downscalers = nn.ModuleList()
self.down_repeat_mappers = nn.ModuleList()
for i in range(len(c_hidden)):
if i > 0:
self.down_downscalers.append(nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
))
else:
self.down_downscalers.append(nn.Identity())
down_block = nn.ModuleList()
for _ in range(blocks[0][i]):
for block_type in level_config[i]:
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
down_block.append(block)
self.down_blocks.append(down_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[0][i] - 1):
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
self.down_repeat_mappers.append(block_repeat_mappers)
# -- up blocks
self.up_blocks = nn.ModuleList()
self.up_upscalers = nn.ModuleList()
self.up_repeat_mappers = nn.ModuleList()
for i in reversed(range(len(c_hidden))):
if i > 0:
self.up_upscalers.append(nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
))
else:
self.up_upscalers.append(nn.Identity())
up_block = nn.ModuleList()
for j in range(blocks[1][::-1][i]):
for k, block_type in enumerate(level_config[i]):
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
self_attn=self_attn[i])
up_block.append(block)
self.up_blocks.append(up_block)
if block_repeat is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(block_repeat[1][::-1][i] - 1):
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
self.up_repeat_mappers.append(block_repeat_mappers)
# OUTPUT
self.clf = nn.Sequential(
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
nn.PixelShuffle(patch_size),
)
# --- WEIGHT INIT ---
# self.apply(self._init_weights) # General init
# nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
# nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
# nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
# nn.init.constant_(self.clf[1].weight, 0) # outputs
#
# # blocks
# for level_block in self.down_blocks + self.up_blocks:
# for block in level_block:
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
# elif isinstance(block, TimestepBlock):
# for layer in block.modules():
# if isinstance(layer, nn.Linear):
# nn.init.constant_(layer.weight, 0)
#
# def _init_weights(self, m):
# if isinstance(m, (nn.Conv2d, nn.Linear)):
# torch.nn.init.xavier_uniform_(m.weight)
# if m.bias is not None:
# nn.init.constant_(m.bias, 0)
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode='constant')
return emb
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
clip_txt = self.clip_txt_mapper(clip_txt)
if len(clip_txt_pooled.shape) == 2:
clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
if len(clip_img.shape) == 2:
clip_img = clip_img.unsqueeze(1)
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
clip = self.clip_norm(clip)
return clip
def _down_encode(self, x, r_embed, clip, cnet=None):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
if cnet is not None:
next_cnet = cnet()
if next_cnet is not None:
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
align_corners=True)
x = block(x)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, ResBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
ResBlock)):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
align_corners=True)
if cnet is not None:
next_cnet = cnet()
if next_cnet is not None:
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
align_corners=True)
x = block(x, skip)
elif isinstance(block, AttnBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
AttnBlock)):
x = block(x, clip)
elif isinstance(block, TimestepBlock) or (
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
TimestepBlock)):
x = block(x, r_embed)
else:
x = block(x)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
return x
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, cnet=None, **kwargs):
# Process the conditioning embeddings
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
for c in self.t_conds:
t_cond = kwargs.get(c, torch.zeros_like(r))
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
# Model Blocks
x = self.embedding(x)
if cnet is not None:
cnet = ControlNetDeliverer(cnet)
level_outputs = self._down_encode(x, r_embed, clip, cnet)
x = self._up_decode(level_outputs, r_embed, clip, cnet)
return self.clf(x)
def update_weights_ema(self, src_model, beta=0.999):
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)

95
comfy/ldm/cascade/stage_c_coder.py

@ -0,0 +1,95 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import torchvision
from torch import nn
# EfficientNet
class EfficientNetEncoder(nn.Module):
def __init__(self, c_latent=16):
super().__init__()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
self.mapper = nn.Sequential(
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
)
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
def forward(self, x):
x = x * 0.5 + 0.5
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
o = self.mapper(self.backbone(x))
return o
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
class Previewer(nn.Module):
def __init__(self, c_in=16, c_hidden=512, c_out=3):
super().__init__()
self.blocks = nn.Sequential(
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
nn.GELU(),
nn.BatchNorm2d(c_hidden),
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden),
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
nn.GELU(),
nn.BatchNorm2d(c_hidden // 2),
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 2),
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden // 4),
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
)
def forward(self, x):
return (self.blocks(x) - 0.5) * 2.0
class StageC_coder(nn.Module):
def __init__(self):
super().__init__()
self.previewer = Previewer()
self.encoder = EfficientNetEncoder()
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.previewer(x)

21
comfy/ldm/modules/attention.py

@ -114,7 +114,12 @@ def attention_basic(q, k, v, heads, mask=None):
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
else:
sim += mask
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
sim.add_(mask)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
@ -165,6 +170,13 @@ def attention_sub_quad(query, key, value, heads, mask=None):
if query_chunk_size is None:
query_chunk_size = 512
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
hidden_states = efficient_dot_product_attention(
query,
key,
@ -223,6 +235,13 @@ def attention_split(q, k, v, heads, mask=None):
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False

61
comfy/model_base.py

@ -1,5 +1,7 @@
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
import comfy.model_management
@ -12,9 +14,10 @@ class ModelType(Enum):
EPS = 1
V_PREDICTION = 2
V_PREDICTION_EDM = 3
STABLE_CASCADE = 4
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM
from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling
def model_sampling(model_config, model_type):
@ -27,6 +30,9 @@ def model_sampling(model_config, model_type):
elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION
s = ModelSamplingContinuousEDM
elif model_type == ModelType.STABLE_CASCADE:
c = EPS
s = StableCascadeSampling
class ModelSampling(s, c):
pass
@ -35,7 +41,7 @@ def model_sampling(model_config, model_type):
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
super().__init__()
unet_config = model_config.unet_config
@ -48,7 +54,7 @@ class BaseModel(torch.nn.Module):
operations = comfy.ops.manual_cast
else:
operations = comfy.ops.disable_weight_init
self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
self.model_type = model_type
self.model_sampling = model_sampling(model_config, model_type)
@ -427,3 +433,52 @@ class SD_X4Upscaler(BaseModel):
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
out['y'] = comfy.conds.CONDRegular(noise_level)
return out
class StableCascade_C(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageC)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
clip_text_pooled = kwargs["pooled_output"]
if clip_text_pooled is not None:
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
if "unclip_conditioning" in kwargs:
embeds = []
for unclip_cond in kwargs["unclip_conditioning"]:
weight = unclip_cond["strength"]
embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
clip_img = torch.cat(embeds, dim=1)
else:
clip_img = torch.zeros((1, 1, 768))
out["clip_img"] = comfy.conds.CONDRegular(clip_img)
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
class StableCascade_B(BaseModel):
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
super().__init__(model_config, model_type, device=device, unet_model=StageB)
self.diffusion_model.eval().requires_grad_(False)
def extra_conds(self, **kwargs):
out = {}
noise = kwargs.get("noise", None)
clip_text_pooled = kwargs["pooled_output"]
if clip_text_pooled is not None:
out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
out["effnet"] = comfy.conds.CONDRegular(prior)
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
return out

42
comfy/model_detection.py

@ -28,9 +28,38 @@ def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
return None
def detect_unet_config(state_dict, key_prefix, dtype):
def detect_unet_config(state_dict, key_prefix):
state_dict_keys = list(state_dict.keys())
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
unet_config = {}
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
if text_mapper_name in state_dict_keys:
unet_config['stable_cascade_stage'] = 'c'
w = state_dict[text_mapper_name]
if w.shape[0] == 1536: #stage c lite
unet_config['c_cond'] = 1536
unet_config['c_hidden'] = [1536, 1536]
unet_config['nhead'] = [24, 24]
unet_config['blocks'] = [[4, 12], [12, 4]]
elif w.shape[0] == 2048: #stage c full
unet_config['c_cond'] = 2048
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
unet_config['stable_cascade_stage'] = 'b'
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
if w.shape[-1] == 640:
unet_config['c_hidden'] = [320, 640, 1280, 1280]
unet_config['nhead'] = [-1, -1, 20, 20]
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
elif w.shape[-1] == 576: #stage b lite
unet_config['c_hidden'] = [320, 576, 1152, 1152]
unet_config['nhead'] = [-1, 9, 18, 18]
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
return unet_config
unet_config = {
"use_checkpoint": False,
"image_size": 32,
@ -45,7 +74,6 @@ def detect_unet_config(state_dict, key_prefix, dtype):
else:
unet_config["adm_in_channels"] = None
unet_config["dtype"] = dtype
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
@ -159,8 +187,8 @@ def model_config_from_unet_config(unet_config):
print("no match", unet_config)
return None
def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False):
unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype)
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
unet_config = detect_unet_config(state_dict, unet_key_prefix)
model_config = model_config_from_unet_config(unet_config)
if model_config is None and use_base_if_no_match:
return comfy.supported_models_base.BASE(unet_config)
@ -206,7 +234,7 @@ def convert_config(unet_config):
return new_config
def unet_config_from_diffusers_unet(state_dict, dtype):
def unet_config_from_diffusers_unet(state_dict, dtype=None):
match = {}
transformer_depth = []
@ -313,8 +341,8 @@ def unet_config_from_diffusers_unet(state_dict, dtype):
return convert_config(unet_config)
return None
def model_config_from_diffusers_unet(state_dict, dtype):
unet_config = unet_config_from_diffusers_unet(state_dict, dtype)
def model_config_from_diffusers_unet(state_dict):
unet_config = unet_config_from_diffusers_unet(state_dict)
if unet_config is not None:
return model_config_from_unet_config(unet_config)
return None

84
comfy/model_management.py

@ -487,7 +487,7 @@ def unet_inital_load_device(parameters, dtype):
else:
return cpu_dev
def unet_dtype(device=None, model_params=0):
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if args.bf16_unet:
return torch.bfloat16
if args.fp16_unet:
@ -497,20 +497,31 @@ def unet_dtype(device=None, model_params=0):
if args.fp8_e5m2_unet:
return torch.float8_e5m2
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
return torch.float16
if torch.float16 in supported_dtypes:
return torch.float16
if should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device):
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if weight_dtype == torch.float32:
return None
fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
if fp16_supported:
bf16_supported = should_use_bf16(inference_device)
if bf16_supported and weight_dtype == torch.bfloat16:
return None
if fp16_supported and torch.float16 in supported_dtypes:
return torch.float16
elif bf16_supported and torch.bfloat16 in supported_dtypes:
return torch.bfloat16
else:
return torch.float32
@ -684,17 +695,20 @@ def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
def is_device_cpu(device):
def is_device_type(device, type):
if hasattr(device, 'type'):
if (device.type == 'cpu'):
if (device.type == type):
return True
return False
def is_device_cpu(device):
return is_device_type(device, 'cpu')
def is_device_mps(device):
if hasattr(device, 'type'):
if (device.type == 'mps'):
return True
return False
return is_device_type(device, 'mps')
def is_device_cuda(device):
return is_device_type(device, 'cuda')
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
global directml_enabled
@ -706,9 +720,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
if FORCE_FP16:
return True
if device is not None: #TODO
if device is not None:
if is_device_mps(device):
return False
return True
if FORCE_FP32:
return False
@ -716,8 +730,11 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False #TODO ?
if mps_mode():
return True
if cpu_mode():
return False
if is_intel_xpu():
return True
@ -757,6 +774,43 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
return True
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
if device is not None:
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
return False
if device is not None: #TODO not sure about mps bf16 support
if is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False
if is_intel_xpu():
return True
if device is None:
device = torch.device("cuda")
props = torch.cuda.get_device_properties(device)
if props.major >= 8:
return True
bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
return False
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:

53
comfy/model_sampling.py

@ -132,3 +132,56 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
log_sigma_min = math.log(self.sigma_min)
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
class StableCascadeSampling(ModelSamplingDiscrete):
def __init__(self, model_config=None):
super().__init__()
if model_config is not None:
sampling_settings = model_config.sampling_settings
else:
sampling_settings = {}
self.set_parameters(sampling_settings.get("shift", 1.0))
def set_parameters(self, shift=1.0, cosine_s=8e-3):
self.shift = shift
self.cosine_s = torch.tensor(cosine_s)
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
#This part is just for compatibility with some schedulers in the codebase
self.num_timesteps = 10000
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
for x in range(self.num_timesteps):
t = (x + 1) / self.num_timesteps
sigmas[x] = self.sigma(t)
self.set_sigmas(sigmas)
def sigma(self, timestep):
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
if self.shift != 1.0:
var = alpha_cumprod
logSNR = (var/(1-var)).log()
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
alpha_cumprod = logSNR.sigmoid()
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
def timestep(self, sigma):
var = 1 / ((sigma * sigma) + 1)
var = var.clamp(0, 1.0)
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
return t
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 999999999.9
if percent >= 1.0:
return 0.0
percent = 1.0 - percent
return self.sigma(torch.tensor(percent))

49
comfy/ops.py

@ -1,3 +1,21 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import comfy.model_management
@ -78,7 +96,11 @@ class disable_weight_init:
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
else:
weight = None
bias = None
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
@ -87,6 +109,28 @@ class disable_weight_init:
else:
return super().forward(*args, **kwargs)
class ConvTranspose2d(torch.nn.ConvTranspose2d):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input, output_size=None):
num_spatial_dims = 2
output_padding = self._output_padding(
input, output_size, self.stride, self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.conv_transpose2d(
input, weight, bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
@ -112,3 +156,6 @@ class manual_cast(disable_weight_init):
class LayerNorm(disable_weight_init.LayerNorm):
comfy_cast_weights = True
class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
comfy_cast_weights = True

3
comfy/samplers.py

@ -652,6 +652,7 @@ def sampler_object(name):
class KSampler:
SCHEDULERS = SCHEDULER_NAMES
SAMPLERS = SAMPLER_NAMES
DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
self.model = model
@ -670,7 +671,7 @@ class KSampler:
sigmas = None
discard_penultimate_sigma = False
if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
steps += 1
discard_penultimate_sigma = True

126
comfy/sd.py

@ -1,7 +1,11 @@
import torch
from enum import Enum
from comfy import model_management
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
from .ldm.cascade.stage_a import StageA
from .ldm.cascade.stage_c_coder import StageC_coder
import yaml
import comfy.utils
@ -134,8 +138,11 @@ class CLIP:
tokens = self.tokenize(text)
return self.encode_from_tokens(tokens)
def load_sd(self, sd):
return self.cond_stage_model.load_sd(sd)
def load_sd(self, sd, full_model=False):
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False)
else:
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
return self.cond_stage_model.state_dict()
@ -155,7 +162,10 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
self.downscale_ratio = 8
self.upscale_ratio = 8
self.latent_channels = 4
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
@ -168,6 +178,34 @@ class VAE:
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
elif "taesd_decoder.1.weight" in sd:
self.first_stage_model = comfy.taesd.taesd.TAESD()
elif "vquantizer.codebook.weight" in sd: #VQGan: stage a of stable cascade
self.first_stage_model = StageA()
self.downscale_ratio = 4
self.upscale_ratio = 4
#TODO
#self.memory_used_encode
#self.memory_used_decode
self.process_input = lambda image: image
self.process_output = lambda image: image
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: #effnet: encoder for stage c latent of stable cascade
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
new_sd = {}
for k in sd:
new_sd["encoder.{}".format(k)] = sd[k]
sd = new_sd
elif "blocks.11.num_batches_tracked" in sd: #previewer: decoder for stage c latent of stable cascade
self.first_stage_model = StageC_coder()
self.latent_channels = 16
new_sd = {}
for k in sd:
new_sd["previewer.{}".format(k)] = sd[k]
sd = new_sd
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: #combined effnet and previewer for stable cascade
self.first_stage_model = StageC_coder()
self.downscale_ratio = 32
self.latent_channels = 16
else:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@ -175,6 +213,7 @@ class VAE:
if 'encoder.down.2.downsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.upscale_ratio = 4
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
else:
@ -200,18 +239,27 @@ class VAE:
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
def vae_encode_crop_pixels(self, pixels):
x = (pixels.shape[1] // self.downscale_ratio) * self.downscale_ratio
y = (pixels.shape[2] // self.downscale_ratio) * self.downscale_ratio
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % self.downscale_ratio) // 2
y_offset = (pixels.shape[2] % self.downscale_ratio) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = comfy.utils.ProgressBar(steps)
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
output = torch.clamp((
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
output = self.process_output(
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar))
/ 3.0)
return output
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
@ -220,7 +268,7 @@ class VAE:
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pbar = comfy.utils.ProgressBar(steps)
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
@ -235,10 +283,10 @@ class VAE:
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.upscale_ratio), round(samples_in.shape[3] * self.upscale_ratio)), device=self.output_device)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
pixel_samples[x:x+batch_number] = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float())
except model_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
pixel_samples = self.decode_tiled_(samples_in)
@ -252,6 +300,7 @@ class VAE:
return output.movedim(1,-1)
def encode(self, pixel_samples):
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
pixel_samples = pixel_samples.movedim(-1,1)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
@ -261,7 +310,7 @@ class VAE:
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
pixels_in = self.process_input(pixel_samples[x:x+batch_number]).to(self.vae_dtype).to(self.device)
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
except model_management.OOM_EXCEPTION as e:
@ -271,6 +320,7 @@ class VAE:
return samples
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
model_management.load_model_gpu(self.patcher)
pixel_samples = pixel_samples.movedim(-1,1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
@ -297,8 +347,11 @@ def load_style_model(ckpt_path):
model.load_state_dict(model_data)
return StyleModel(model)
class CLIPType(Enum):
STABLE_DIFFUSION = 1
STABLE_CASCADE = 2
def load_clip(ckpt_paths, embedding_directory=None):
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION):
clip_data = []
for p in ckpt_paths:
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
@ -314,8 +367,12 @@ def load_clip(ckpt_paths, embedding_directory=None):
clip_target.params = {}
if len(clip_data) == 1:
if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
if clip_type == CLIPType.STABLE_CASCADE:
clip_target.clip = sdxl_clip.StableCascadeClipModel
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
clip_target.clip = sd2_clip.SD2ClipModel
clip_target.tokenizer = sd2_clip.SD2Tokenizer
@ -438,15 +495,12 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
clip_target = None
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
model_config.set_manual_cast(manual_cast_dtype)
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
@ -467,13 +521,19 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
sd = model_config.process_clip_state_dict(sd)
load_model_weights(w, sd)
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
print("clip missing:", m)
if len(u) > 0:
print("clip unexpected:", u)
else:
print("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
@ -492,16 +552,15 @@ def load_unet_state_dict(sd): #load unet in diffusers format
parameters = comfy.utils.calculate_parameters(sd)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = model_management.get_torch_device()
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if "input_blocks.0.0.weight" in sd: #ldm
model_config = model_detection.model_config_from_unet(sd, "", unet_dtype)
if "input_blocks.0.0.weight" in sd or 'clf.1.weight' in sd: #ldm or stable cascade
model_config = model_detection.model_config_from_unet(sd, "")
if model_config is None:
return None
new_sd = sd
else: #diffusers
model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype)
model_config = model_detection.model_config_from_diffusers_unet(sd)
if model_config is None:
return None
@ -513,8 +572,11 @@ def load_unet_state_dict(sd): #load unet in diffusers format
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
print(diffusers_keys[k], k)
offload_device = model_management.unet_offload_device()
model_config.set_manual_cast(manual_cast_dtype)
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")

4
comfy/sd1_clip.py

@ -67,7 +67,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True): # clip-vit-base-patch32
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
@ -88,7 +88,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.special_tokens = special_tokens
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.enable_attention_masks = False
self.enable_attention_masks = enable_attention_masks
self.layer_norm_hidden_state = layer_norm_hidden_state
if layer == "hidden":

22
comfy/sdxl_clip.py

@ -64,3 +64,25 @@ class SDXLClipModel(torch.nn.Module):
class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None):
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=SDXLClipG)
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None):
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None):
super().__init__(embedding_directory=embedding_directory, clip_name="g", tokenizer=StableCascadeClipGTokenizer)
class StableCascadeClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True)
def load_sd(self, sd):
return super().load_sd(sd)
class StableCascadeClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None):
super().__init__(device=device, dtype=dtype, clip_name="g", clip_model=StableCascadeClipG)

94
comfy/supported_models.py

@ -40,8 +40,8 @@ class SD15(supported_models_base.BASE):
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
replace_prefix = {}
replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
replace_prefix["cond_stage_model."] = "clip_l."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
@ -72,10 +72,10 @@ class SD20(supported_models_base.BASE):
def process_clip_state_dict(self, state_dict):
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "cond_stage_model.model." #SD2 in sgm format
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24)
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
replace_prefix["cond_stage_model.model."] = "clip_h."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "clip_h.", "clip_h.transformer.text_model.", 24)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
@ -131,11 +131,10 @@ class SDXLRefiner(supported_models_base.BASE):
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
@ -179,13 +178,13 @@ class SDXL(supported_models_base.BASE):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
replace_prefix["conditioner.embedders.1.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
keys_to_replace["clip_g.text_projection.weight"] = "clip_g.text_projection"
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
@ -306,5 +305,66 @@ class SD_X4Upscaler(SD20):
out = model_base.SD_X4Upscaler(self, device=device)
return out
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega, SD_X4Upscaler]
class Stable_Cascade_C(supported_models_base.BASE):
unet_config = {
"stable_cascade_stage": 'c',
}
unet_extra_config = {}
latent_format = latent_formats.SC_Prior
supported_inference_dtypes = [torch.bfloat16, torch.float32]
sampling_settings = {
"shift": 2.0,
}
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoder."]
clip_vision_prefix = "clip_l_vision."
def process_unet_state_dict(self, state_dict):
key_list = list(state_dict.keys())
for y in ["weight", "bias"]:
suffix = "in_proj_{}".format(y)
keys = filter(lambda a: a.endswith(suffix), key_list)
for k_from in keys:
weights = state_dict.pop(k_from)
prefix = k_from[:-(len(suffix) + 1)]
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["to_q", "to_k", "to_v"]
k_to = "{}.{}.{}".format(prefix, p[x], y)
state_dict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return state_dict
def get_model(self, state_dict, prefix="", device=None):
out = model_base.StableCascade_C(self, device=device)
return out
def clip_target(self):
return supported_models_base.ClipTarget(sdxl_clip.StableCascadeTokenizer, sdxl_clip.StableCascadeClipModel)
class Stable_Cascade_B(Stable_Cascade_C):
unet_config = {
"stable_cascade_stage": 'b',
}
unet_extra_config = {}
latent_format = latent_formats.SC_B
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
sampling_settings = {
"shift": 1.0,
}
clip_vision_prefix = None
def get_model(self, state_dict, prefix="", device=None):
out = model_base.StableCascade_B(self, device=device)
return out
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B]
models += [SVD_img2vid]

12
comfy/supported_models_base.py

@ -22,13 +22,15 @@ class BASE:
sampling_settings = {}
latent_format = latent_formats.LatentFormat
vae_key_prefix = ["first_stage_model."]
text_encoder_key_prefix = ["cond_stage_model."]
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
manual_cast_dtype = None
@classmethod
def matches(s, unet_config):
for k in s.unet_config:
if s.unet_config[k] != unet_config[k]:
if k not in unet_config or s.unet_config[k] != unet_config[k]:
return False
return True
@ -54,6 +56,7 @@ class BASE:
return out
def process_clip_state_dict(self, state_dict):
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
return state_dict
def process_unet_state_dict(self, state_dict):
@ -63,7 +66,7 @@ class BASE:
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "cond_stage_model."}
replace_prefix = {"": self.text_encoder_key_prefix[0]}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def process_clip_vision_state_dict_for_saving(self, state_dict):
@ -77,8 +80,9 @@ class BASE:
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def process_vae_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "first_stage_model."}
replace_prefix = {"": self.vae_key_prefix[0]}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def set_manual_cast(self, manual_cast_dtype):
def set_inference_dtype(self, dtype, manual_cast_dtype):
self.unet_config['dtype'] = dtype
self.manual_cast_dtype = manual_cast_dtype

2
comfy/utils.py

@ -169,6 +169,8 @@ UNET_MAP_BASIC = {
}
def unet_to_diffusers(unet_config):
if "num_res_blocks" not in unet_config:
return {}
num_res_blocks = unet_config["num_res_blocks"]
channel_mult = unet_config["channel_mult"]
transformer_depth = unet_config["transformer_depth"][:]

20
comfy_extras/nodes_images.py

@ -48,6 +48,25 @@ class RepeatImageBatch:
s = image.repeat((amount, 1,1,1))
return (s,)
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "frombatch"
CATEGORY = "image/batch"
def frombatch(self, image, batch_index, length):
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return (s,)
class SaveAnimatedWEBP:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@ -170,6 +189,7 @@ class SaveAnimatedPNG:
NODE_CLASS_MAPPINGS = {
"ImageCrop": ImageCrop,
"RepeatImageBatch": RepeatImageBatch,
"ImageFromBatch": ImageFromBatch,
"SaveAnimatedWEBP": SaveAnimatedWEBP,
"SaveAnimatedPNG": SaveAnimatedPNG,
}

35
comfy_extras/nodes_model_advanced.py

@ -17,6 +17,10 @@ class LCM(comfy.model_sampling.EPS):
return c_out * x0 + c_skip * model_input
class X0(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
original_timesteps = 50
@ -68,7 +72,7 @@ class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm"],),
"sampling": (["eps", "v_prediction", "lcm", "x0"],),
"zsnr": ("BOOLEAN", {"default": False}),
}}
@ -88,6 +92,8 @@ class ModelSamplingDiscrete:
elif sampling == "lcm":
sampling_type = LCM
sampling_base = ModelSamplingDiscreteDistilled
elif sampling == "x0":
sampling_type = X0
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
@ -99,6 +105,32 @@ class ModelSamplingDiscrete:
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingStableCascade:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step":0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, shift):
m = model.clone()
sampling_base = comfy.model_sampling.StableCascadeSampling
sampling_type = comfy.model_sampling.EPS
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingContinuousEDM:
@classmethod
def INPUT_TYPES(s):
@ -171,5 +203,6 @@ class RescaleCFG:
NODE_CLASS_MAPPINGS = {
"ModelSamplingDiscrete": ModelSamplingDiscrete,
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
"ModelSamplingStableCascade": ModelSamplingStableCascade,
"RescaleCFG": RescaleCFG,
}

109
comfy_extras/nodes_stable_cascade.py

@ -0,0 +1,109 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import nodes
import comfy.utils
class StableCascade_EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}),
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})
}}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("stage_c", "stage_b")
FUNCTION = "generate"
CATEGORY = "_for_testing/stable_cascade"
def generate(self, width, height, compression, batch_size=1):
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
return ({
"samples": c_latent,
}, {
"samples": b_latent,
})
class StableCascade_StageC_VAEEncode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"vae": ("VAE", ),
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
}}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("stage_c", "stage_b")
FUNCTION = "generate"
CATEGORY = "_for_testing/stable_cascade"
def generate(self, image, vae, compression):
width = image.shape[-2]
height = image.shape[-3]
out_width = (width // compression) * vae.downscale_ratio
out_height = (height // compression) * vae.downscale_ratio
s = comfy.utils.common_upscale(image.movedim(-1,1), out_width, out_height, "bicubic", "center").movedim(1,-1)
c_latent = vae.encode(s[:,:,:,:3])
b_latent = torch.zeros([c_latent.shape[0], 4, height // 4, width // 4])
return ({
"samples": c_latent,
}, {
"samples": b_latent,
})
class StableCascade_StageB_Conditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": { "conditioning": ("CONDITIONING",),
"stage_c": ("LATENT",),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "set_prior"
CATEGORY = "_for_testing/stable_cascade"
def set_prior(self, conditioning, stage_c):
c = []
for t in conditioning:
d = t[1].copy()
d['stable_cascade_prior'] = stage_c['samples']
n = [t[0], d]
c.append(n)
return (c, )
NODE_CLASS_MAPPINGS = {
"StableCascade_EmptyLatentImage": StableCascade_EmptyLatentImage,
"StableCascade_StageB_Conditioning": StableCascade_StageB_Conditioning,
"StableCascade_StageC_VAEEncode": StableCascade_StageC_VAEEncode,
}

49
custom_nodes/websocket_image_save.py.disabled

@ -0,0 +1,49 @@
from PIL import Image, ImageOps
from io import BytesIO
import numpy as np
import struct
import comfy.utils
import time
#You can use this node to save full size images through the websocket, the
#images will be sent in exactly the same format as the image previews: as
#binary images on the websocket with a 8 byte header indicating the type
#of binary message (first 4 bytes) and the image format (next 4 bytes).
#The reason this node is disabled by default is because there is a small
#issue when using it with the default ComfyUI web interface: When generating
#batches only the last image will be shown in the UI.
#Note that no metadata will be put in the images saved with this node.
class SaveImageWebsocket:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),}
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image"
def save_images(self, images):
pbar = comfy.utils.ProgressBar(images.shape[0])
step = 0
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
pbar.update_absolute(step, images.shape[0], ("PNG", img, None))
step += 1
return {}
def IS_CHANGED(s, images):
return time.time()
NODE_CLASS_MAPPINGS = {
"SaveImageWebsocket": SaveImageWebsocket,
}

14
execution.py

@ -194,8 +194,12 @@ def recursive_execute(server, prompt, outputs, current_item, extra_data, execute
return (True, None, None)
def recursive_will_execute(prompt, outputs, current_item):
def recursive_will_execute(prompt, outputs, current_item, memo={}):
unique_id = current_item
if unique_id in memo:
return memo[unique_id]
inputs = prompt[unique_id]['inputs']
will_execute = []
if unique_id in outputs:
@ -207,9 +211,10 @@ def recursive_will_execute(prompt, outputs, current_item):
input_unique_id = input_data[0]
output_index = input_data[1]
if input_unique_id not in outputs:
will_execute += recursive_will_execute(prompt, outputs, input_unique_id)
will_execute += recursive_will_execute(prompt, outputs, input_unique_id, memo)
return will_execute + [unique_id]
memo[unique_id] = will_execute + [unique_id]
return memo[unique_id]
def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item):
unique_id = current_item
@ -377,7 +382,8 @@ class PromptExecutor:
while len(to_execute) > 0:
#always execute the output that depends on the least amount of unexecuted nodes first
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1])), a[-1]), to_execute)))
memo = {}
to_execute = sorted(list(map(lambda a: (len(recursive_will_execute(prompt, self.outputs, a[-1], memo)), a[-1]), to_execute)))
output_node_id = to_execute.pop(0)[-1]
# This call shouldn't raise anything if there's an error deep in

35
nodes.py

@ -309,18 +309,7 @@ class VAEEncode:
CATEGORY = "latent"
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
@ -336,7 +325,6 @@ class VAEEncodeTiled:
CATEGORY = "_for_testing"
def encode(self, vae, pixels, tile_size):
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
return ({"samples":t}, )
@ -350,14 +338,14 @@ class VAEEncodeForInpaint:
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
@ -854,15 +842,20 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
"type": (["stable_diffusion", "stable_cascade"], ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name):
def load_clip(self, clip_name, type="stable_diffusion"):
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
if type == "stable_cascade":
clip_type = comfy.sd.CLIPType.STABLE_CASCADE
clip_path = folder_paths.get_full_path("clip", clip_name)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"))
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
return (clip,)
class DualCLIPLoader:
@ -1434,7 +1427,7 @@ class SaveImage:
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
for image in images:
for (batch_number, image) in enumerate(images):
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
@ -1446,7 +1439,8 @@ class SaveImage:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
file = f"{filename}_{counter:05}_.png"
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
results.append({
"filename": file,
@ -1966,6 +1960,7 @@ def init_custom_nodes():
"nodes_sdupscale.py",
"nodes_photomaker.py",
"nodes_cond.py",
"nodes_stable_cascade.py",
]
for node_file in extras_files:

1
web/extensions/core/widgetInputs.js

@ -22,6 +22,7 @@ function isConvertableWidget(widget, config) {
}
function hideWidget(node, widget, suffix = "") {
if (widget.type?.startsWith(CONVERTED_TYPE)) return;
widget.origType = widget.type;
widget.origComputeSize = widget.computeSize;
widget.origSerializeValue = widget.serializeValue;

4
web/scripts/pnginfo.js

@ -24,7 +24,7 @@ export function getPngMetadata(file) {
const length = dataView.getUint32(offset);
// Get the chunk type
const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8));
if (type === "tEXt" || type == "comf") {
if (type === "tEXt" || type == "comf" || type === "iTXt") {
// Get the keyword
let keyword_end = offset + 8;
while (pngData[keyword_end] !== 0) {
@ -33,7 +33,7 @@ export function getPngMetadata(file) {
const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end));
// Get the text
const contentArraySegment = pngData.slice(keyword_end + 1, offset + 8 + length);
const contentJson = Array.from(contentArraySegment).map(s=>String.fromCharCode(s)).join('')
const contentJson = new TextDecoder("utf-8").decode(contentArraySegment);
txt_chunks[keyword] = contentJson;
}

7
web/style.css

@ -197,6 +197,7 @@ button.comfy-close-menu-btn {
.comfy-modal button:hover,
.comfy-menu-actions button:hover {
filter: brightness(1.2);
will-change: transform;
cursor: pointer;
}
@ -462,11 +463,13 @@ dialog::backdrop {
z-index: 9999 !important;
background-color: var(--comfy-menu-bg) !important;
filter: brightness(95%);
will-change: transform;
}
.litegraph.litecontextmenu .litemenu-entry:hover:not(.disabled):not(.separator) {
background-color: var(--comfy-menu-bg) !important;
filter: brightness(155%);
will-change: transform;
color: var(--input-text);
}
@ -527,12 +530,14 @@ dialog::backdrop {
color: var(--input-text);
background-color: var(--comfy-input-bg);
filter: brightness(80%);
will-change: transform;
padding-left: 0.2em;
}
.litegraph.lite-search-item.generic_type {
color: var(--input-text);
filter: brightness(50%);
will-change: transform;
}
@media only screen and (max-width: 450px) {
@ -551,4 +556,4 @@ dialog::backdrop {
text-align: center;
border-top: none;
}
}
}

Loading…
Cancel
Save