Browse Source

Clean up DiffusersLoader node.

pull/1375/head
comfyanonymous 1 year ago
parent
commit
7e941f9f24
  1. 101
      comfy/diffusers_load.py
  2. 2
      nodes.py

101
comfy/diffusers_load.py

@ -1,87 +1,36 @@
import json
import os
import yaml
import folder_paths
from comfy.sd import load_checkpoint
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
from . import diffusers_convert
import comfy.sd
def first_file(path, filenames):
for f in filenames:
p = os.path.join(path, f)
if os.path.exists(p):
return p
return None
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
# magic
v2 = diffusers_unet_conf["sample_size"] == 96
if 'prediction_type' in diffusers_scheduler_conf:
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
if v2:
if v_pred:
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
text_encoder_paths = [text_encoder1_path]
if text_encoder2_path is not None:
text_encoder_paths.append(text_encoder2_path)
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
unet = comfy.sd.load_unet(unet_path)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
vae_config['scale_factor'] = scale_factor
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
clip = None
if output_clip:
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
vae = None
if output_vae:
vae = comfy.sd.VAE(ckpt_path=vae_path)
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
return (unet, clip, vae)

2
nodes.py

@ -475,7 +475,7 @@ class DiffusersLoader:
model_path = path
break
return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
class unCLIPCheckpointLoader:

Loading…
Cancel
Save