comfyanonymous
1 year ago
2 changed files with 26 additions and 77 deletions
@ -1,87 +1,36 @@
|
||||
import json |
||||
import os |
||||
import yaml |
||||
|
||||
import folder_paths |
||||
from comfy.sd import load_checkpoint |
||||
import os.path as osp |
||||
import re |
||||
import torch |
||||
from safetensors.torch import load_file, save_file |
||||
from . import diffusers_convert |
||||
import comfy.sd |
||||
|
||||
def first_file(path, filenames): |
||||
for f in filenames: |
||||
p = os.path.join(path, f) |
||||
if os.path.exists(p): |
||||
return p |
||||
return None |
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None): |
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json"))) |
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json"))) |
||||
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None): |
||||
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"] |
||||
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names) |
||||
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names) |
||||
|
||||
# magic |
||||
v2 = diffusers_unet_conf["sample_size"] == 96 |
||||
if 'prediction_type' in diffusers_scheduler_conf: |
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
||||
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"] |
||||
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names) |
||||
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names) |
||||
|
||||
if v2: |
||||
if v_pred: |
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml') |
||||
else: |
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml') |
||||
else: |
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml') |
||||
text_encoder_paths = [text_encoder1_path] |
||||
if text_encoder2_path is not None: |
||||
text_encoder_paths.append(text_encoder2_path) |
||||
|
||||
with open(config_path, 'r') as stream: |
||||
config = yaml.safe_load(stream) |
||||
unet = comfy.sd.load_unet(unet_path) |
||||
|
||||
model_config_params = config['model']['params'] |
||||
clip_config = model_config_params['cond_stage_config'] |
||||
scale_factor = model_config_params['scale_factor'] |
||||
vae_config = model_config_params['first_stage_config'] |
||||
vae_config['scale_factor'] = scale_factor |
||||
model_config_params["unet_config"]["params"]["use_fp16"] = fp16 |
||||
clip = None |
||||
if output_clip: |
||||
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory) |
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") |
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") |
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors") |
||||
vae = None |
||||
if output_vae: |
||||
vae = comfy.sd.VAE(ckpt_path=vae_path) |
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch |
||||
if osp.exists(unet_path): |
||||
unet_state_dict = load_file(unet_path, device="cpu") |
||||
else: |
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") |
||||
unet_state_dict = torch.load(unet_path, map_location="cpu") |
||||
|
||||
if osp.exists(vae_path): |
||||
vae_state_dict = load_file(vae_path, device="cpu") |
||||
else: |
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") |
||||
vae_state_dict = torch.load(vae_path, map_location="cpu") |
||||
|
||||
if osp.exists(text_enc_path): |
||||
text_enc_dict = load_file(text_enc_path, device="cpu") |
||||
else: |
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") |
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu") |
||||
|
||||
# Convert the UNet model |
||||
unet_state_dict = diffusers_convert.convert_unet_state_dict(unet_state_dict) |
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} |
||||
|
||||
# Convert the VAE model |
||||
vae_state_dict = diffusers_convert.convert_vae_state_dict(vae_state_dict) |
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} |
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper |
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict |
||||
|
||||
if is_v20_model: |
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm |
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} |
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict_v20(text_enc_dict) |
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} |
||||
else: |
||||
text_enc_dict = diffusers_convert.convert_text_enc_state_dict(text_enc_dict) |
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} |
||||
|
||||
# Put together new checkpoint |
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} |
||||
|
||||
return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config) |
||||
return (unet, clip, vae) |
||||
|
Loading…
Reference in new issue