Browse Source

Fix lowvram mode not working with unCLIP and Revision code.

pull/2391/head
comfyanonymous 11 months ago
parent
commit
61b3f15f8f
  1. 4
      comfy/ldm/modules/diffusionmodules/upscaling.py
  2. 4
      comfy/ldm/modules/encoders/noise_aug_modules.py

4
comfy/ldm/modules/diffusionmodules/upscaling.py

@ -43,8 +43,8 @@ class AbstractLowScaleModel(nn.Module):
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
def forward(self, x):
return x, None

4
comfy/ldm/modules/encoders/noise_aug_modules.py

@ -15,12 +15,12 @@ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
def scale(self, x):
# re-normalize to centered mean and unit variance
x = (x - self.data_mean) * 1. / self.data_std
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
return x
def unscale(self, x):
# back to original data stats
x = (x * self.data_std) + self.data_mean
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
return x
def forward(self, x, noise_level=None):

Loading…
Cancel
Save