|
|
|
@ -272,7 +272,8 @@ def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, emb
|
|
|
|
|
|
|
|
|
|
# magic |
|
|
|
|
v2 = diffusers_unet_conf["sample_size"] == 96 |
|
|
|
|
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
|
|
|
|
if 'prediction_type' in diffusers_scheduler_conf: |
|
|
|
|
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
|
|
|
|
|
|
|
|
|
if v2: |
|
|
|
|
if v_pred: |
|
|
|
@ -290,6 +291,7 @@ def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, emb
|
|
|
|
|
scale_factor = model_config_params['scale_factor'] |
|
|
|
|
vae_config = model_config_params['first_stage_config'] |
|
|
|
|
vae_config['scale_factor'] = scale_factor |
|
|
|
|
model_config_params["unet_config"]["params"]["use_fp16"] = fp16 |
|
|
|
|
|
|
|
|
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") |
|
|
|
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") |
|
|
|
|