|
|
|
@ -123,6 +123,45 @@ class ModelSamplingDiscrete:
|
|
|
|
|
m.add_object_patch("model_sampling", model_sampling) |
|
|
|
|
return (m, ) |
|
|
|
|
|
|
|
|
|
class RescaleCFG: |
|
|
|
|
@classmethod |
|
|
|
|
def INPUT_TYPES(s): |
|
|
|
|
return {"required": { "model": ("MODEL",), |
|
|
|
|
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
|
|
|
}} |
|
|
|
|
RETURN_TYPES = ("MODEL",) |
|
|
|
|
FUNCTION = "patch" |
|
|
|
|
|
|
|
|
|
CATEGORY = "advanced/model" |
|
|
|
|
|
|
|
|
|
def patch(self, model, multiplier): |
|
|
|
|
def rescale_cfg(args): |
|
|
|
|
cond = args["cond"] |
|
|
|
|
uncond = args["uncond"] |
|
|
|
|
cond_scale = args["cond_scale"] |
|
|
|
|
sigma = args["sigma"] |
|
|
|
|
x_orig = args["input"] |
|
|
|
|
|
|
|
|
|
#rescale cfg has to be done on v-pred model output |
|
|
|
|
x = x_orig / (sigma * sigma + 1.0) |
|
|
|
|
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) |
|
|
|
|
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) |
|
|
|
|
|
|
|
|
|
#rescalecfg |
|
|
|
|
x_cfg = uncond + cond_scale * (cond - uncond) |
|
|
|
|
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) |
|
|
|
|
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) |
|
|
|
|
|
|
|
|
|
x_rescaled = x_cfg * (ro_pos / ro_cfg) |
|
|
|
|
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg |
|
|
|
|
|
|
|
|
|
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) |
|
|
|
|
|
|
|
|
|
m = model.clone() |
|
|
|
|
m.set_model_sampler_cfg_function(rescale_cfg) |
|
|
|
|
return (m, ) |
|
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
|
|
"ModelSamplingDiscrete": ModelSamplingDiscrete, |
|
|
|
|
"RescaleCFG": RescaleCFG, |
|
|
|
|
} |
|
|
|
|