Browse Source

Add some low vram modes: --lowvram and --novram

pull/4/head
comfyanonymous 2 years ago
parent
commit
534736b924
  1. 2
      comfy/k_diffusion/external.py
  2. 53
      comfy/model_management.py
  3. 3
      main.py
  4. 2
      requirements.txt

2
comfy/k_diffusion/external.py

@ -66,7 +66,7 @@ class DiscreteSchedule(nn.Module):
def sigma_to_t(self, sigma, quantize=None):
quantize = self.quantize if quantize is None else quantize
log_sigma = sigma.log()
dists = log_sigma - self.log_sigmas[:, None]
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
if quantize:
return dists.abs().argmin(dim=0).view(sigma.shape)
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)

53
comfy/model_management.py

@ -1,11 +1,48 @@
CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
accelerate_enabled = False
vram_state = NORMAL_VRAM
import sys
set_vram_to = NORMAL_VRAM
if "--lowvram" in sys.argv:
set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
set_vram_to = NO_VRAM
if set_vram_to != NORMAL_VRAM:
try:
import accelerate
accelerate_enabled = True
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM"][vram_state])
current_loaded_model = None
model_accelerated = False
def unload_model():
global current_loaded_model
global model_accelerated
if current_loaded_model is not None:
if model_accelerated:
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
model_accelerated = False
current_loaded_model.model.cpu()
current_loaded_model.unpatch_model()
current_loaded_model = None
@ -13,6 +50,9 @@ def unload_model():
def load_model_gpu(model):
global current_loaded_model
global vram_state
global model_accelerated
if model is current_loaded_model:
return
unload_model()
@ -22,5 +62,16 @@ def load_model_gpu(model):
model.unpatch_model()
raise e
current_loaded_model = model
real_model.cuda()
if vram_state == CPU:
pass
elif vram_state == NORMAL_VRAM:
model_accelerated = False
real_model.cuda()
else:
if vram_state == NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
elif vram_state == LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "1GiB", "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
model_accelerated = True
return current_loaded_model

3
main.py

@ -14,6 +14,9 @@ if __name__ == "__main__":
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
print()
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.")
print("\t--novram\t\t\tWhen lowvram isn't enough.")
print()
exit()
if '--dont-upcast-attention' in sys.argv:

2
requirements.txt

@ -8,3 +8,5 @@ transformers
safetensors
pytorch_lightning
accelerate

Loading…
Cancel
Save