comfyanonymous
2 years ago
9 changed files with 580 additions and 63 deletions
@ -0,0 +1,286 @@ |
|||||||
|
#taken from: https://github.com/lllyasviel/ControlNet |
||||||
|
#and modified |
||||||
|
|
||||||
|
import einops |
||||||
|
import torch |
||||||
|
import torch as th |
||||||
|
import torch.nn as nn |
||||||
|
|
||||||
|
from ldm.modules.diffusionmodules.util import ( |
||||||
|
conv_nd, |
||||||
|
linear, |
||||||
|
zero_module, |
||||||
|
timestep_embedding, |
||||||
|
) |
||||||
|
|
||||||
|
from einops import rearrange, repeat |
||||||
|
from torchvision.utils import make_grid |
||||||
|
from ldm.modules.attention import SpatialTransformer |
||||||
|
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock |
||||||
|
from ldm.models.diffusion.ddpm import LatentDiffusion |
||||||
|
from ldm.util import log_txt_as_img, exists, instantiate_from_config |
||||||
|
|
||||||
|
|
||||||
|
class ControlledUnetModel(UNetModel): |
||||||
|
#implemented in the ldm unet |
||||||
|
pass |
||||||
|
|
||||||
|
class ControlNet(nn.Module): |
||||||
|
def __init__( |
||||||
|
self, |
||||||
|
image_size, |
||||||
|
in_channels, |
||||||
|
model_channels, |
||||||
|
hint_channels, |
||||||
|
num_res_blocks, |
||||||
|
attention_resolutions, |
||||||
|
dropout=0, |
||||||
|
channel_mult=(1, 2, 4, 8), |
||||||
|
conv_resample=True, |
||||||
|
dims=2, |
||||||
|
use_checkpoint=False, |
||||||
|
use_fp16=False, |
||||||
|
num_heads=-1, |
||||||
|
num_head_channels=-1, |
||||||
|
num_heads_upsample=-1, |
||||||
|
use_scale_shift_norm=False, |
||||||
|
resblock_updown=False, |
||||||
|
use_new_attention_order=False, |
||||||
|
use_spatial_transformer=False, # custom transformer support |
||||||
|
transformer_depth=1, # custom transformer support |
||||||
|
context_dim=None, # custom transformer support |
||||||
|
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model |
||||||
|
legacy=True, |
||||||
|
disable_self_attentions=None, |
||||||
|
num_attention_blocks=None, |
||||||
|
disable_middle_self_attn=False, |
||||||
|
use_linear_in_transformer=False, |
||||||
|
): |
||||||
|
super().__init__() |
||||||
|
if use_spatial_transformer: |
||||||
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
||||||
|
|
||||||
|
if context_dim is not None: |
||||||
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
||||||
|
from omegaconf.listconfig import ListConfig |
||||||
|
if type(context_dim) == ListConfig: |
||||||
|
context_dim = list(context_dim) |
||||||
|
|
||||||
|
if num_heads_upsample == -1: |
||||||
|
num_heads_upsample = num_heads |
||||||
|
|
||||||
|
if num_heads == -1: |
||||||
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
||||||
|
|
||||||
|
if num_head_channels == -1: |
||||||
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
||||||
|
|
||||||
|
self.dims = dims |
||||||
|
self.image_size = image_size |
||||||
|
self.in_channels = in_channels |
||||||
|
self.model_channels = model_channels |
||||||
|
if isinstance(num_res_blocks, int): |
||||||
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
||||||
|
else: |
||||||
|
if len(num_res_blocks) != len(channel_mult): |
||||||
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
||||||
|
"as a list/tuple (per-level) with the same length as channel_mult") |
||||||
|
self.num_res_blocks = num_res_blocks |
||||||
|
if disable_self_attentions is not None: |
||||||
|
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not |
||||||
|
assert len(disable_self_attentions) == len(channel_mult) |
||||||
|
if num_attention_blocks is not None: |
||||||
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
||||||
|
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) |
||||||
|
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " |
||||||
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " |
||||||
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " |
||||||
|
f"attention will still not be set.") |
||||||
|
|
||||||
|
self.attention_resolutions = attention_resolutions |
||||||
|
self.dropout = dropout |
||||||
|
self.channel_mult = channel_mult |
||||||
|
self.conv_resample = conv_resample |
||||||
|
self.use_checkpoint = use_checkpoint |
||||||
|
self.dtype = th.float16 if use_fp16 else th.float32 |
||||||
|
self.num_heads = num_heads |
||||||
|
self.num_head_channels = num_head_channels |
||||||
|
self.num_heads_upsample = num_heads_upsample |
||||||
|
self.predict_codebook_ids = n_embed is not None |
||||||
|
|
||||||
|
time_embed_dim = model_channels * 4 |
||||||
|
self.time_embed = nn.Sequential( |
||||||
|
linear(model_channels, time_embed_dim), |
||||||
|
nn.SiLU(), |
||||||
|
linear(time_embed_dim, time_embed_dim), |
||||||
|
) |
||||||
|
|
||||||
|
self.input_blocks = nn.ModuleList( |
||||||
|
[ |
||||||
|
TimestepEmbedSequential( |
||||||
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
||||||
|
) |
||||||
|
] |
||||||
|
) |
||||||
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) |
||||||
|
|
||||||
|
self.input_hint_block = TimestepEmbedSequential( |
||||||
|
conv_nd(dims, hint_channels, 16, 3, padding=1), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 16, 16, 3, padding=1), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 16, 32, 3, padding=1, stride=2), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 32, 32, 3, padding=1), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 32, 96, 3, padding=1, stride=2), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 96, 96, 3, padding=1), |
||||||
|
nn.SiLU(), |
||||||
|
conv_nd(dims, 96, 256, 3, padding=1, stride=2), |
||||||
|
nn.SiLU(), |
||||||
|
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) |
||||||
|
) |
||||||
|
|
||||||
|
self._feature_size = model_channels |
||||||
|
input_block_chans = [model_channels] |
||||||
|
ch = model_channels |
||||||
|
ds = 1 |
||||||
|
for level, mult in enumerate(channel_mult): |
||||||
|
for nr in range(self.num_res_blocks[level]): |
||||||
|
layers = [ |
||||||
|
ResBlock( |
||||||
|
ch, |
||||||
|
time_embed_dim, |
||||||
|
dropout, |
||||||
|
out_channels=mult * model_channels, |
||||||
|
dims=dims, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
use_scale_shift_norm=use_scale_shift_norm, |
||||||
|
) |
||||||
|
] |
||||||
|
ch = mult * model_channels |
||||||
|
if ds in attention_resolutions: |
||||||
|
if num_head_channels == -1: |
||||||
|
dim_head = ch // num_heads |
||||||
|
else: |
||||||
|
num_heads = ch // num_head_channels |
||||||
|
dim_head = num_head_channels |
||||||
|
if legacy: |
||||||
|
#num_heads = 1 |
||||||
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
||||||
|
if exists(disable_self_attentions): |
||||||
|
disabled_sa = disable_self_attentions[level] |
||||||
|
else: |
||||||
|
disabled_sa = False |
||||||
|
|
||||||
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
||||||
|
layers.append( |
||||||
|
AttentionBlock( |
||||||
|
ch, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
num_heads=num_heads, |
||||||
|
num_head_channels=dim_head, |
||||||
|
use_new_attention_order=use_new_attention_order, |
||||||
|
) if not use_spatial_transformer else SpatialTransformer( |
||||||
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
||||||
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
||||||
|
use_checkpoint=use_checkpoint |
||||||
|
) |
||||||
|
) |
||||||
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
||||||
|
self.zero_convs.append(self.make_zero_conv(ch)) |
||||||
|
self._feature_size += ch |
||||||
|
input_block_chans.append(ch) |
||||||
|
if level != len(channel_mult) - 1: |
||||||
|
out_ch = ch |
||||||
|
self.input_blocks.append( |
||||||
|
TimestepEmbedSequential( |
||||||
|
ResBlock( |
||||||
|
ch, |
||||||
|
time_embed_dim, |
||||||
|
dropout, |
||||||
|
out_channels=out_ch, |
||||||
|
dims=dims, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
use_scale_shift_norm=use_scale_shift_norm, |
||||||
|
down=True, |
||||||
|
) |
||||||
|
if resblock_updown |
||||||
|
else Downsample( |
||||||
|
ch, conv_resample, dims=dims, out_channels=out_ch |
||||||
|
) |
||||||
|
) |
||||||
|
) |
||||||
|
ch = out_ch |
||||||
|
input_block_chans.append(ch) |
||||||
|
self.zero_convs.append(self.make_zero_conv(ch)) |
||||||
|
ds *= 2 |
||||||
|
self._feature_size += ch |
||||||
|
|
||||||
|
if num_head_channels == -1: |
||||||
|
dim_head = ch // num_heads |
||||||
|
else: |
||||||
|
num_heads = ch // num_head_channels |
||||||
|
dim_head = num_head_channels |
||||||
|
if legacy: |
||||||
|
#num_heads = 1 |
||||||
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
||||||
|
self.middle_block = TimestepEmbedSequential( |
||||||
|
ResBlock( |
||||||
|
ch, |
||||||
|
time_embed_dim, |
||||||
|
dropout, |
||||||
|
dims=dims, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
use_scale_shift_norm=use_scale_shift_norm, |
||||||
|
), |
||||||
|
AttentionBlock( |
||||||
|
ch, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
num_heads=num_heads, |
||||||
|
num_head_channels=dim_head, |
||||||
|
use_new_attention_order=use_new_attention_order, |
||||||
|
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn |
||||||
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
||||||
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
||||||
|
use_checkpoint=use_checkpoint |
||||||
|
), |
||||||
|
ResBlock( |
||||||
|
ch, |
||||||
|
time_embed_dim, |
||||||
|
dropout, |
||||||
|
dims=dims, |
||||||
|
use_checkpoint=use_checkpoint, |
||||||
|
use_scale_shift_norm=use_scale_shift_norm, |
||||||
|
), |
||||||
|
) |
||||||
|
self.middle_block_out = self.make_zero_conv(ch) |
||||||
|
self._feature_size += ch |
||||||
|
|
||||||
|
def make_zero_conv(self, channels): |
||||||
|
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) |
||||||
|
|
||||||
|
def forward(self, x, hint, timesteps, context, **kwargs): |
||||||
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) |
||||||
|
emb = self.time_embed(t_emb) |
||||||
|
|
||||||
|
guided_hint = self.input_hint_block(hint, emb, context) |
||||||
|
|
||||||
|
outs = [] |
||||||
|
|
||||||
|
h = x.type(self.dtype) |
||||||
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
||||||
|
if guided_hint is not None: |
||||||
|
h = module(h, emb, context) |
||||||
|
h += guided_hint |
||||||
|
guided_hint = None |
||||||
|
else: |
||||||
|
h = module(h, emb, context) |
||||||
|
outs.append(zero_conv(h, emb, context)) |
||||||
|
|
||||||
|
h = self.middle_block(h, emb, context) |
||||||
|
outs.append(self.middle_block_out(h, emb, context)) |
||||||
|
|
||||||
|
return outs |
||||||
|
|
@ -0,0 +1,18 @@ |
|||||||
|
import torch |
||||||
|
|
||||||
|
def common_upscale(samples, width, height, upscale_method, crop): |
||||||
|
if crop == "center": |
||||||
|
old_width = samples.shape[3] |
||||||
|
old_height = samples.shape[2] |
||||||
|
old_aspect = old_width / old_height |
||||||
|
new_aspect = width / height |
||||||
|
x = 0 |
||||||
|
y = 0 |
||||||
|
if old_aspect > new_aspect: |
||||||
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) |
||||||
|
elif old_aspect < new_aspect: |
||||||
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) |
||||||
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
||||||
|
else: |
||||||
|
s = samples |
||||||
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) |
Loading…
Reference in new issue