Browse Source
It needs the CLIPVision model so I added CLIPVisionLoader and CLIPVisionEncode. Put the clip vision model in models/clip_vision Put the t2i style model in models/style_models StyleModelLoader to load it, StyleModelApply to apply it ConditioningAppend to append the conditioning it outputs to a positive one.pull/44/head
comfyanonymous
2 years ago
5 changed files with 143 additions and 5 deletions
@ -0,0 +1,32 @@
|
||||
from transformers import CLIPVisionModel, CLIPVisionConfig, CLIPImageProcessor |
||||
from comfy.sd import load_torch_file |
||||
import os |
||||
|
||||
class ClipVisionModel(): |
||||
def __init__(self): |
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config.json") |
||||
config = CLIPVisionConfig.from_json_file(json_config) |
||||
self.model = CLIPVisionModel(config) |
||||
self.processor = CLIPImageProcessor(crop_size=224, |
||||
do_center_crop=True, |
||||
do_convert_rgb=True, |
||||
do_normalize=True, |
||||
do_resize=True, |
||||
image_mean=[ 0.48145466,0.4578275,0.40821073], |
||||
image_std=[0.26862954,0.26130258,0.27577711], |
||||
resample=3, #bicubic |
||||
size=224) |
||||
|
||||
def load_sd(self, sd): |
||||
self.model.load_state_dict(sd, strict=False) |
||||
|
||||
def encode_image(self, image): |
||||
inputs = self.processor(images=[image[0]], return_tensors="pt") |
||||
outputs = self.model(**inputs) |
||||
return outputs |
||||
|
||||
def load(ckpt_path): |
||||
clip_data = load_torch_file(ckpt_path) |
||||
clip = ClipVisionModel() |
||||
clip.load_sd(clip_data) |
||||
return clip |
Loading…
Reference in new issue