|
|
|
@ -1,29 +1,23 @@
|
|
|
|
|
import torch |
|
|
|
|
from contextlib import contextmanager |
|
|
|
|
|
|
|
|
|
class Linear(torch.nn.Module): |
|
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
|
|
|
|
device=None, dtype=None) -> None: |
|
|
|
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
|
|
|
super().__init__() |
|
|
|
|
self.in_features = in_features |
|
|
|
|
self.out_features = out_features |
|
|
|
|
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) |
|
|
|
|
if bias: |
|
|
|
|
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) |
|
|
|
|
else: |
|
|
|
|
self.register_parameter('bias', None) |
|
|
|
|
|
|
|
|
|
def forward(self, input): |
|
|
|
|
return torch.nn.functional.linear(input, self.weight, self.bias) |
|
|
|
|
class Linear(torch.nn.Linear): |
|
|
|
|
def reset_parameters(self): |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
class Conv2d(torch.nn.Conv2d): |
|
|
|
|
def reset_parameters(self): |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
class Conv3d(torch.nn.Conv3d): |
|
|
|
|
def reset_parameters(self): |
|
|
|
|
return None |
|
|
|
|
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
|
|
|
if dims == 2: |
|
|
|
|
return Conv2d(*args, **kwargs) |
|
|
|
|
elif dims == 3: |
|
|
|
|
return Conv3d(*args, **kwargs) |
|
|
|
|
else: |
|
|
|
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
|
|
|
|