Browse Source

Refactor.

pull/1943/head
comfyanonymous 1 year ago
parent
commit
412d3ff57d
  1. 24
      comfy/ops.py

24
comfy/ops.py

@ -1,29 +1,23 @@
import torch
from contextlib import contextmanager
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter('bias', None)
def forward(self, input):
return torch.nn.functional.linear(input, self.weight, self.bias)
class Linear(torch.nn.Linear):
def reset_parameters(self):
return None
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
class Conv3d(torch.nn.Conv3d):
def reset_parameters(self):
return None
def conv_nd(dims, *args, **kwargs):
if dims == 2:
return Conv2d(*args, **kwargs)
elif dims == 3:
return Conv3d(*args, **kwargs)
else:
raise ValueError(f"unsupported dimensions: {dims}")

Loading…
Cancel
Save