|
|
@ -393,10 +393,16 @@ class VAE: |
|
|
|
pixel_samples = pixel_samples.cpu().movedim(1,-1) |
|
|
|
pixel_samples = pixel_samples.cpu().movedim(1,-1) |
|
|
|
return pixel_samples |
|
|
|
return pixel_samples |
|
|
|
|
|
|
|
|
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 8): |
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
|
|
model_management.unload_model() |
|
|
|
model_management.unload_model() |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
output = utils.tiled_scale(samples, lambda a: torch.clamp((self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) / 2.0, min=0.0, max=1.0), tile_x, tile_y, overlap, upscale_amount = 8) |
|
|
|
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0) |
|
|
|
|
|
|
|
output = torch.clamp(( |
|
|
|
|
|
|
|
(utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8) + |
|
|
|
|
|
|
|
utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8) + |
|
|
|
|
|
|
|
utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8)) |
|
|
|
|
|
|
|
/ 3.0) / 2.0, min=0.0, max=1.0) |
|
|
|
|
|
|
|
|
|
|
|
self.first_stage_model = self.first_stage_model.cpu() |
|
|
|
self.first_stage_model = self.first_stage_model.cpu() |
|
|
|
return output.movedim(1,-1) |
|
|
|
return output.movedim(1,-1) |
|
|
|
|
|
|
|
|
|
|
@ -414,6 +420,9 @@ class VAE: |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
pixel_samples = pixel_samples.movedim(-1,1).to(self.device) |
|
|
|
pixel_samples = pixel_samples.movedim(-1,1).to(self.device) |
|
|
|
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4) |
|
|
|
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4) |
|
|
|
|
|
|
|
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4) |
|
|
|
|
|
|
|
samples += utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4) |
|
|
|
|
|
|
|
samples /= 3.0 |
|
|
|
self.first_stage_model = self.first_stage_model.cpu() |
|
|
|
self.first_stage_model = self.first_stage_model.cpu() |
|
|
|
samples = samples.cpu() |
|
|
|
samples = samples.cpu() |
|
|
|
return samples |
|
|
|
return samples |
|
|
|