Browse Source

Expose grow_mask_by in VAEEncodeForInpaint.

The mask is dilated by grow_mask_by pixels after being applied to the pixel
space image. This helps reduce seams caused by inpainting. Higher value
means less seams.
pull/613/head
comfyanonymous 2 years ago
parent
commit
35f636b6c7
  1. 15
      nodes.py

15
nodes.py

@ -5,6 +5,7 @@ import sys
import json
import hashlib
import traceback
import math
from PIL import Image
from PIL.PngImagePlugin import PngInfo
@ -223,13 +224,13 @@ class VAEEncodeForInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask):
def encode(self, vae, pixels, mask, grow_mask_by=6):
x = (pixels.shape[1] // 64) * 64
y = (pixels.shape[2] // 64) * 64
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
@ -240,8 +241,14 @@ class VAEEncodeForInpaint:
mask = mask[:,:,:x,:y]
#grow mask by a few pixels to keep things seamless in latent space
kernel_tensor = torch.ones((1, 1, 6, 6))
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=3), 0, 1)
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5

Loading…
Cancel
Save