Browse Source

Add experimental bislerp algorithm for latent upscaling.

It's like bilinear but with slerp.
pull/696/head
comfyanonymous 2 years ago
parent
commit
34887b8885
  1. 65
      comfy/utils.py
  2. 2
      nodes.py

65
comfy/utils.py

@ -46,6 +46,65 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd return sd
#slow and inefficient, should be optimized
def bislerp(samples, width, height):
shape = list(samples.shape)
width_scale = (shape[3]) / (width )
height_scale = (shape[2]) / (height )
shape[3] = width
shape[2] = height
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device)
def algorithm(in1, w1, in2, w2):
dims = in1.shape
val = w2
#flatten to batches
low = in1.reshape(dims[0], -1)
high = in2.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
# in case we divide by zero
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
for x_dest in range(shape[3]):
for y_dest in range(shape[2]):
y = (y_dest) * height_scale
x = (x_dest) * width_scale
x1 = max(math.floor(x), 0)
x2 = min(x1 + 1, samples.shape[3] - 1)
y1 = max(math.floor(y), 0)
y2 = min(y1 + 1, samples.shape[2] - 1)
in1 = samples[:,:,y1,x1]
in2 = samples[:,:,y1,x2]
in3 = samples[:,:,y2,x1]
in4 = samples[:,:,y2,x2]
if (x1 == x2) and (y1 == y2):
out_value = in1
elif (x1 == x2):
out_value = algorithm(in1, (y2 - y), in3, (y - y1))
elif (y1 == y2):
out_value = algorithm(in1, (x2 - x), in2, (x - x1))
else:
o1 = algorithm(in1, (x2 - x), in2, (x - x1))
o2 = algorithm(in3, (x2 - x), in4, (x - x1))
out_value = algorithm(o1, (y2 - y), o2, (y - y1))
out1[:,:,y_dest,x_dest] = out_value
return out1
def common_upscale(samples, width, height, upscale_method, crop): def common_upscale(samples, width, height, upscale_method, crop):
if crop == "center": if crop == "center":
old_width = samples.shape[3] old_width = samples.shape[3]
@ -61,7 +120,11 @@ def common_upscale(samples, width, height, upscale_method, crop):
s = samples[:,:,y:old_height-y,x:old_width-x] s = samples[:,:,y:old_height-y,x:old_width-x]
else: else:
s = samples s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
if upscale_method == "bislerp":
return bislerp(s, width, height)
else:
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))

2
nodes.py

@ -749,7 +749,7 @@ class RepeatLatentBatch:
return (s,) return (s,)
class LatentUpscale: class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"] upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
crop_methods = ["disabled", "center"] crop_methods = ["disabled", "center"]
@classmethod @classmethod

Loading…
Cancel
Save