|
|
@ -46,6 +46,65 @@ def transformers_convert(sd, prefix_from, prefix_to, number): |
|
|
|
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] |
|
|
|
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)] |
|
|
|
return sd |
|
|
|
return sd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#slow and inefficient, should be optimized |
|
|
|
|
|
|
|
def bislerp(samples, width, height): |
|
|
|
|
|
|
|
shape = list(samples.shape) |
|
|
|
|
|
|
|
width_scale = (shape[3]) / (width ) |
|
|
|
|
|
|
|
height_scale = (shape[2]) / (height ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
shape[3] = width |
|
|
|
|
|
|
|
shape[2] = height |
|
|
|
|
|
|
|
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def algorithm(in1, w1, in2, w2): |
|
|
|
|
|
|
|
dims = in1.shape |
|
|
|
|
|
|
|
val = w2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#flatten to batches |
|
|
|
|
|
|
|
low = in1.reshape(dims[0], -1) |
|
|
|
|
|
|
|
high = in2.reshape(dims[0], -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
low_norm = low/torch.norm(low, dim=1, keepdim=True) |
|
|
|
|
|
|
|
high_norm = high/torch.norm(high, dim=1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# in case we divide by zero |
|
|
|
|
|
|
|
low_norm[low_norm != low_norm] = 0.0 |
|
|
|
|
|
|
|
high_norm[high_norm != high_norm] = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
omega = torch.acos((low_norm*high_norm).sum(1)) |
|
|
|
|
|
|
|
so = torch.sin(omega) |
|
|
|
|
|
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high |
|
|
|
|
|
|
|
return res.reshape(dims) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for x_dest in range(shape[3]): |
|
|
|
|
|
|
|
for y_dest in range(shape[2]): |
|
|
|
|
|
|
|
y = (y_dest) * height_scale |
|
|
|
|
|
|
|
x = (x_dest) * width_scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x1 = max(math.floor(x), 0) |
|
|
|
|
|
|
|
x2 = min(x1 + 1, samples.shape[3] - 1) |
|
|
|
|
|
|
|
y1 = max(math.floor(y), 0) |
|
|
|
|
|
|
|
y2 = min(y1 + 1, samples.shape[2] - 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
in1 = samples[:,:,y1,x1] |
|
|
|
|
|
|
|
in2 = samples[:,:,y1,x2] |
|
|
|
|
|
|
|
in3 = samples[:,:,y2,x1] |
|
|
|
|
|
|
|
in4 = samples[:,:,y2,x2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (x1 == x2) and (y1 == y2): |
|
|
|
|
|
|
|
out_value = in1 |
|
|
|
|
|
|
|
elif (x1 == x2): |
|
|
|
|
|
|
|
out_value = algorithm(in1, (y2 - y), in3, (y - y1)) |
|
|
|
|
|
|
|
elif (y1 == y2): |
|
|
|
|
|
|
|
out_value = algorithm(in1, (x2 - x), in2, (x - x1)) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
o1 = algorithm(in1, (x2 - x), in2, (x - x1)) |
|
|
|
|
|
|
|
o2 = algorithm(in3, (x2 - x), in4, (x - x1)) |
|
|
|
|
|
|
|
out_value = algorithm(o1, (y2 - y), o2, (y - y1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
out1[:,:,y_dest,x_dest] = out_value |
|
|
|
|
|
|
|
return out1 |
|
|
|
|
|
|
|
|
|
|
|
def common_upscale(samples, width, height, upscale_method, crop): |
|
|
|
def common_upscale(samples, width, height, upscale_method, crop): |
|
|
|
if crop == "center": |
|
|
|
if crop == "center": |
|
|
|
old_width = samples.shape[3] |
|
|
|
old_width = samples.shape[3] |
|
|
@ -61,7 +120,11 @@ def common_upscale(samples, width, height, upscale_method, crop): |
|
|
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
|
|
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
|
|
|
else: |
|
|
|
else: |
|
|
|
s = samples |
|
|
|
s = samples |
|
|
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) |
|
|
|
|
|
|
|
|
|
|
|
if upscale_method == "bislerp": |
|
|
|
|
|
|
|
return bislerp(s, width, height) |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) |
|
|
|
|
|
|
|
|
|
|
|
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): |
|
|
|
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): |
|
|
|
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) |
|
|
|
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) |
|
|
|