Browse Source

Ci quality workflows (#1423)

* Add inference tests

* Clean up

* Rename test graph file

* Add readme for tests

* Separate server fixture

* test file name change

* Assert images are generated

* Clean up comments

* Add __init__.py so tests can run with command line `pytest`

* Fix command line args for pytest

* Loop all samplers/schedulers in test_inference.py

* Ci quality workflows compare (#1)

* Add image comparison tests

* Comparison tests do not pass with empty metadata

* Ensure tests are run in correct order

* Save image files  with test name

* Update tests readme

* Reduce step counts in tests to ~halve runtime

* Ci quality workflows build (#2)

* Add build test github workflow
pull/1555/head
enzymezoo-code 1 year ago committed by GitHub
parent
commit
26cd8405dd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 31
      .github/workflows/test-build.yml
  2. 5
      pytest.ini
  3. 29
      tests/README.md
  4. 0
      tests/__init__.py
  5. 41
      tests/compare/conftest.py
  6. 195
      tests/compare/test_quality.py
  7. 36
      tests/conftest.py
  8. 0
      tests/inference/__init__.py
  9. 144
      tests/inference/graphs/default_graph_sdxl1_0.json
  10. 247
      tests/inference/test_inference.py

31
.github/workflows/test-build.yml

@ -0,0 +1,31 @@
name: Build package
#
# This workflow is a test of the python package build.
# Install Python dependencies across different Python versions.
#
on:
push:
paths:
- "requirements.txt"
- ".github/workflows/test-build.yml"
jobs:
build:
name: Build Test
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt

5
pytest.ini

@ -0,0 +1,5 @@
[pytest]
markers =
inference: mark as inference test (deselect with '-m "not inference"')
testpaths = tests
addopts = -s

29
tests/README.md

@ -0,0 +1,29 @@
# Automated Testing
## Running tests locally
Additional requirements for running tests:
```
pip install pytest
pip install websocket-client==1.6.1
opencv-python==4.6.0.66
scikit-image==0.21.0
```
Run inference tests:
```
pytest tests/inference
```
## Quality regression test
Compares images in 2 directories to ensure they are the same
1) Run an inference test to save a directory of "ground truth" images
```
pytest tests/inference --output_dir tests/inference/baseline
```
2) Make code edits
3) Run inference and quality comparison tests
```
pytest
```

0
tests/__init__.py

41
tests/compare/conftest.py

@ -0,0 +1,41 @@
import os
import pytest
# Command line arguments for pytest
def pytest_addoption(parser):
parser.addoption('--baseline_dir', action="store", default='tests/inference/baseline', help='Directory for ground-truth images')
parser.addoption('--test_dir', action="store", default='tests/inference/samples', help='Directory for images to test')
parser.addoption('--metrics_file', action="store", default='tests/metrics.md', help='Output file for metrics')
parser.addoption('--img_output_dir', action="store", default='tests/compare/samples', help='Output directory for diff metric images')
# This initializes args at the beginning of the test session
@pytest.fixture(scope="session", autouse=True)
def args_pytest(pytestconfig):
args = {}
args['baseline_dir'] = pytestconfig.getoption('baseline_dir')
args['test_dir'] = pytestconfig.getoption('test_dir')
args['metrics_file'] = pytestconfig.getoption('metrics_file')
args['img_output_dir'] = pytestconfig.getoption('img_output_dir')
# Initialize metrics file
with open(args['metrics_file'], 'a') as f:
# if file is empty, write header
if os.stat(args['metrics_file']).st_size == 0:
f.write("| date | run | file | status | value | \n")
f.write("| --- | --- | --- | --- | --- | \n")
return args
def gather_file_basenames(directory: str):
files = []
for file in os.listdir(directory):
if file.endswith(".png"):
files.append(file)
return files
# Creates the list of baseline file names to use as a fixture
def pytest_generate_tests(metafunc):
if "baseline_fname" in metafunc.fixturenames:
baseline_fnames = gather_file_basenames(metafunc.config.getoption("baseline_dir"))
metafunc.parametrize("baseline_fname", baseline_fnames)

195
tests/compare/test_quality.py

@ -0,0 +1,195 @@
import datetime
import numpy as np
import os
from PIL import Image
import pytest
from pytest import fixture
from typing import Tuple, List
from cv2 import imread, cvtColor, COLOR_BGR2RGB
from skimage.metrics import structural_similarity as ssim
"""
This test suite compares images in 2 directories by file name
The directories are specified by the command line arguments --baseline_dir and --test_dir
"""
# ssim: Structural Similarity Index
# Returns a tuple of (ssim, diff_image)
def ssim_score(img0: np.ndarray, img1: np.ndarray) -> Tuple[float, np.ndarray]:
score, diff = ssim(img0, img1, channel_axis=-1, full=True)
# rescale the difference image to 0-255 range
diff = (diff * 255).astype("uint8")
return score, diff
# Metrics must return a tuple of (score, diff_image)
METRICS = {"ssim": ssim_score}
METRICS_PASS_THRESHOLD = {"ssim": 0.95}
class TestCompareImageMetrics:
@fixture(scope="class")
def test_file_names(self, args_pytest):
test_dir = args_pytest['test_dir']
fnames = self.gather_file_basenames(test_dir)
yield fnames
del fnames
@fixture(scope="class", autouse=True)
def teardown(self, args_pytest):
yield
# Runs after all tests are complete
# Aggregate output files into a grid of images
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
img_output_dir = args_pytest['img_output_dir']
metrics_file = args_pytest['metrics_file']
grid_dir = os.path.join(img_output_dir, "grid")
os.makedirs(grid_dir, exist_ok=True)
for metric_dir in METRICS.keys():
metric_path = os.path.join(img_output_dir, metric_dir)
for file in os.listdir(metric_path):
if file.endswith(".png"):
score = self.lookup_score_from_fname(file, metrics_file)
image_file_list = []
image_file_list.append([
os.path.join(baseline_dir, file),
os.path.join(test_dir, file),
os.path.join(metric_path, file)
])
# Create grid
image_list = [[Image.open(file) for file in files] for files in image_file_list]
grid = self.image_grid(image_list)
grid.save(os.path.join(grid_dir, f"{metric_dir}_{score:.3f}_{file}"))
# Tests run for each baseline file name
@fixture()
def fname(self, baseline_fname):
yield baseline_fname
del baseline_fname
def test_directories_not_empty(self, args_pytest):
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
assert len(os.listdir(baseline_dir)) != 0, f"Baseline directory {baseline_dir} is empty"
assert len(os.listdir(test_dir)) != 0, f"Test directory {test_dir} is empty"
def test_dir_has_all_matching_metadata(self, fname, test_file_names, args_pytest):
# Check that all files in baseline_dir have a file in test_dir with matching metadata
baseline_file_path = os.path.join(args_pytest['baseline_dir'], fname)
file_paths = [os.path.join(args_pytest['test_dir'], f) for f in test_file_names]
file_match = self.find_file_match(baseline_file_path, file_paths)
assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}"
# For a baseline image file, finds the corresponding file name in test_dir and
# compares the images using the metrics in METRICS
@pytest.mark.parametrize("metric", METRICS.keys())
def test_pipeline_compare(
self,
args_pytest,
fname,
test_file_names,
metric,
):
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
metrics_output_file = args_pytest['metrics_file']
img_output_dir = args_pytest['img_output_dir']
baseline_file_path = os.path.join(baseline_dir, fname)
# Find file match
file_paths = [os.path.join(test_dir, f) for f in test_file_names]
test_file = self.find_file_match(baseline_file_path, file_paths)
# Run metrics
sample_baseline = self.read_img(baseline_file_path)
sample_secondary = self.read_img(test_file)
score, metric_img = METRICS[metric](sample_baseline, sample_secondary)
metric_status = score > METRICS_PASS_THRESHOLD[metric]
# Save metric values
with open(metrics_output_file, 'a') as f:
run_info = os.path.splitext(fname)[0]
metric_status_str = "PASS ✅" if metric_status else "FAIL ❌"
date_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"| {date_str} | {run_info} | {metric} | {metric_status_str} | {score} | \n")
# Save metric image
metric_img_dir = os.path.join(img_output_dir, metric)
os.makedirs(metric_img_dir, exist_ok=True)
output_filename = f'{fname}'
Image.fromarray(metric_img).save(os.path.join(metric_img_dir, output_filename))
assert score > METRICS_PASS_THRESHOLD[metric]
def read_img(self, filename: str) -> np.ndarray:
cvImg = imread(filename)
cvImg = cvtColor(cvImg, COLOR_BGR2RGB)
return cvImg
def image_grid(self, img_list: list[list[Image.Image]]):
# imgs is a 2D list of images
# Assumes the input images are a rectangular grid of equal sized images
rows = len(img_list)
cols = len(img_list[0])
w, h = img_list[0][0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, row in enumerate(img_list):
for j, img in enumerate(row):
grid.paste(img, box=(j*w, i*h))
return grid
def lookup_score_from_fname(self,
fname: str,
metrics_output_file: str
) -> float:
fname_basestr = os.path.splitext(fname)[0]
with open(metrics_output_file, 'r') as f:
for line in f:
if fname_basestr in line:
score = float(line.split('|')[5])
return score
raise ValueError(f"Could not find score for {fname} in {metrics_output_file}")
def gather_file_basenames(self, directory: str):
files = []
for file in os.listdir(directory):
if file.endswith(".png"):
files.append(file)
return files
def read_file_prompt(self, fname:str) -> str:
# Read prompt from image file metadata
img = Image.open(fname)
img.load()
return img.info['prompt']
def find_file_match(self, baseline_file: str, file_paths: List[str]):
# Find a file in file_paths with matching metadata to baseline_file
baseline_prompt = self.read_file_prompt(baseline_file)
# Do not match empty prompts
if baseline_prompt is None or baseline_prompt == "":
return None
# Find file match
# Reorder test_file_names so that the file with matching name is first
# This is an optimization because matching file names are more likely
# to have matching metadata if they were generated with the same script
basename = os.path.basename(baseline_file)
file_path_basenames = [os.path.basename(f) for f in file_paths]
if basename in file_path_basenames:
match_index = file_path_basenames.index(basename)
file_paths.insert(0, file_paths.pop(match_index))
for f in file_paths:
test_file_prompt = self.read_file_prompt(f)
if baseline_prompt == test_file_prompt:
return f

36
tests/conftest.py

@ -0,0 +1,36 @@
import os
import pytest
# Command line arguments for pytest
def pytest_addoption(parser):
parser.addoption('--output_dir', action="store", default='tests/inference/samples', help='Output directory for generated images')
parser.addoption("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
parser.addoption("--port", type=int, default=8188, help="Set the listen port.")
# This initializes args at the beginning of the test session
@pytest.fixture(scope="session", autouse=True)
def args_pytest(pytestconfig):
args = {}
args['output_dir'] = pytestconfig.getoption('output_dir')
args['listen'] = pytestconfig.getoption('listen')
args['port'] = pytestconfig.getoption('port')
os.makedirs(args['output_dir'], exist_ok=True)
return args
def pytest_collection_modifyitems(items):
# Modifies items so tests run in the correct order
LAST_TESTS = ['test_quality']
# Move the last items to the end
last_items = []
for test_name in LAST_TESTS:
for item in items.copy():
print(item.module.__name__, item)
if item.module.__name__ == test_name:
last_items.append(item)
items.remove(item)
items.extend(last_items)

0
tests/inference/__init__.py

144
tests/inference/graphs/default_graph_sdxl1_0.json

@ -0,0 +1,144 @@
{
"4": {
"inputs": {
"ckpt_name": "sd_xl_base_1.0.safetensors"
},
"class_type": "CheckpointLoaderSimple"
},
"5": {
"inputs": {
"width": 1024,
"height": 1024,
"batch_size": 1
},
"class_type": "EmptyLatentImage"
},
"6": {
"inputs": {
"text": "a photo of a cat",
"clip": [
"4",
1
]
},
"class_type": "CLIPTextEncode"
},
"10": {
"inputs": {
"add_noise": "enable",
"noise_seed": 42,
"steps": 20,
"cfg": 7.5,
"sampler_name": "euler",
"scheduler": "normal",
"start_at_step": 0,
"end_at_step": 32,
"return_with_leftover_noise": "enable",
"model": [
"4",
0
],
"positive": [
"6",
0
],
"negative": [
"15",
0
],
"latent_image": [
"5",
0
]
},
"class_type": "KSamplerAdvanced"
},
"12": {
"inputs": {
"samples": [
"14",
0
],
"vae": [
"4",
2
]
},
"class_type": "VAEDecode"
},
"13": {
"inputs": {
"filename_prefix": "test_inference",
"images": [
"12",
0
]
},
"class_type": "SaveImage"
},
"14": {
"inputs": {
"add_noise": "disable",
"noise_seed": 42,
"steps": 20,
"cfg": 7.5,
"sampler_name": "euler",
"scheduler": "normal",
"start_at_step": 32,
"end_at_step": 10000,
"return_with_leftover_noise": "disable",
"model": [
"16",
0
],
"positive": [
"17",
0
],
"negative": [
"20",
0
],
"latent_image": [
"10",
0
]
},
"class_type": "KSamplerAdvanced"
},
"15": {
"inputs": {
"conditioning": [
"6",
0
]
},
"class_type": "ConditioningZeroOut"
},
"16": {
"inputs": {
"ckpt_name": "sd_xl_refiner_1.0.safetensors"
},
"class_type": "CheckpointLoaderSimple"
},
"17": {
"inputs": {
"text": "a photo of a cat",
"clip": [
"16",
1
]
},
"class_type": "CLIPTextEncode"
},
"20": {
"inputs": {
"text": "",
"clip": [
"16",
1
]
},
"class_type": "CLIPTextEncode"
}
}

247
tests/inference/test_inference.py

@ -0,0 +1,247 @@
from copy import deepcopy
from io import BytesIO
from urllib import request
import numpy
import os
from PIL import Image
import pytest
from pytest import fixture
import time
import torch
from typing import Union
import json
import subprocess
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
import uuid
import urllib.request
import urllib.parse
# Currently causes an error when running pytest with built-in pytest args
# TODO: modify cli_args.py to not parse args on import
# We will hard-code sampler and scheduler lists for now
# from comfy.samplers import KSampler
"""
These tests generate and save images through a range of parameters
"""
class ComfyGraph:
def __init__(self,
graph: dict,
sampler_nodes: list[str],
):
self.graph = graph
self.sampler_nodes = sampler_nodes
def set_prompt(self, prompt, negative_prompt=None):
# Sets the prompt for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
prompt_node = self.graph[node]['inputs']['positive'][0]
self.graph[prompt_node]['inputs']['text'] = prompt
if negative_prompt:
negative_prompt_node = self.graph[node]['inputs']['negative'][0]
self.graph[negative_prompt_node]['inputs']['text'] = negative_prompt
def set_sampler_name(self, sampler_name:str, ):
# sets the sampler name for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
self.graph[node]['inputs']['sampler_name'] = sampler_name
def set_scheduler(self, scheduler:str):
# sets the sampler name for the sampler nodes (eg. base and refiner)
for node in self.sampler_nodes:
self.graph[node]['inputs']['scheduler'] = scheduler
def set_filename_prefix(self, prefix:str):
# sets the filename prefix for the save nodes
for node in self.graph:
if self.graph[node]['class_type'] == 'SaveImage':
self.graph[node]['inputs']['filename_prefix'] = prefix
class ComfyClient:
# From examples/websockets_api_example.py
def connect(self,
listen:str = '127.0.0.1',
port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4())
):
self.client_id = client_id
self.server_address = f"{listen}:{port}"
ws = websocket.WebSocket()
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
self.ws = ws
def queue_prompt(self, prompt):
p = {"prompt": prompt, "client_id": self.client_id}
data = json.dumps(p).encode('utf-8')
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
return json.loads(urllib.request.urlopen(req).read())
def get_image(self, filename, subfolder, folder_type):
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
url_values = urllib.parse.urlencode(data)
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
return response.read()
def get_history(self, prompt_id):
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
return json.loads(response.read())
def get_images(self, graph, save=True):
prompt = graph
if not save:
# Replace save nodes with preview nodes
prompt_str = json.dumps(prompt)
prompt_str = prompt_str.replace('SaveImage', 'PreviewImage')
prompt = json.loads(prompt_str)
prompt_id = self.queue_prompt(prompt)['prompt_id']
output_images = {}
while True:
out = self.ws.recv()
if isinstance(out, str):
message = json.loads(out)
if message['type'] == 'executing':
data = message['data']
if data['node'] is None and data['prompt_id'] == prompt_id:
break #Execution is done
else:
continue #previews are binary data
history = self.get_history(prompt_id)[prompt_id]
for o in history['outputs']:
for node_id in history['outputs']:
node_output = history['outputs'][node_id]
if 'images' in node_output:
images_output = []
for image in node_output['images']:
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
images_output.append(image_data)
output_images[node_id] = images_output
return output_images
#
# Initialize graphs
#
default_graph_file = 'tests/inference/graphs/default_graph_sdxl1_0.json'
with open(default_graph_file, 'r') as file:
default_graph = json.loads(file.read())
DEFAULT_COMFY_GRAPH = ComfyGraph(graph=default_graph, sampler_nodes=['10','14'])
DEFAULT_COMFY_GRAPH_ID = os.path.splitext(os.path.basename(default_graph_file))[0]
#
# Loop through these variables
#
comfy_graph_list = [DEFAULT_COMFY_GRAPH]
comfy_graph_ids = [DEFAULT_COMFY_GRAPH_ID]
prompt_list = [
'a painting of a cat',
]
#TODO use sampler and scheduler list from comfy.samplers.KSampler
# sampler_list = KSampler.SAMPLERS
# scheduler_list = KSampler.SCHEDULERS
# Hard coded sampler and scheduler lists for now
SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
sampler_list = SAMPLERS
scheduler_list = SCHEDULERS
@pytest.mark.inference
@pytest.mark.parametrize("sampler", sampler_list)
@pytest.mark.parametrize("scheduler", scheduler_list)
@pytest.mark.parametrize("prompt", prompt_list)
class TestInference:
#
# Initialize server and client
#
@fixture(scope="class", autouse=True)
def _server(self, args_pytest):
# Start server
p = subprocess.Popen([
'python','main.py',
'--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]),
])
yield
p.kill()
torch.cuda.empty_cache()
def start_client(self, listen:str, port:int):
# Start client
comfy_client = ComfyClient()
# Connect to server (with retries)
n_tries = 5
for i in range(n_tries):
time.sleep(4)
try:
comfy_client.connect(listen=listen, port=port)
except ConnectionRefusedError as e:
print(e)
print(f"({i+1}/{n_tries}) Retrying...")
else:
break
return comfy_client
#
# Client and graph fixtures with server warmup
#
# Returns a "_client_graph", which is client-graph pair corresponding to an initialized server
# The "graph" is the default graph
@fixture(scope="class", params=comfy_graph_list, ids=comfy_graph_ids, autouse=True)
def _client_graph(self, request, args_pytest, _server) -> (ComfyClient, ComfyGraph):
comfy_graph = request.param
# Start client
comfy_client = self.start_client(args_pytest["listen"], args_pytest["port"])
# Warm up pipeline
comfy_client.get_images(graph=comfy_graph.graph, save=False)
yield comfy_client, comfy_graph
del comfy_client
del comfy_graph
torch.cuda.empty_cache()
@fixture
def client(self, _client_graph):
client = _client_graph[0]
yield client
@fixture
def comfy_graph(self, _client_graph):
# avoid mutating the graph
graph = deepcopy(_client_graph[1])
yield graph
def test_comfy(
self,
client,
comfy_graph,
sampler,
scheduler,
prompt,
request
):
test_info = request.node.name
comfy_graph.set_filename_prefix(test_info)
# Settings for comfy graph
comfy_graph.set_sampler_name(sampler)
comfy_graph.set_scheduler(scheduler)
comfy_graph.set_prompt(prompt)
# Generate
images = client.get_images(comfy_graph.graph)
assert len(images) != 0, "No images generated"
# assert all images are not blank
for images_output in images.values():
for image_data in images_output:
pil_image = Image.open(BytesIO(image_data))
assert numpy.array(pil_image).any() != 0, "Image is blank"
Loading…
Cancel
Save