comfyanonymous
2 years ago
4 changed files with 36 additions and 128 deletions
@ -1,87 +0,0 @@ |
|||||||
from utils import waste_cpu_resource |
|
||||||
class ExampleFolder: |
|
||||||
""" |
|
||||||
A example node |
|
||||||
|
|
||||||
Class methods |
|
||||||
------------- |
|
||||||
INPUT_TYPES (dict): |
|
||||||
Tell the main program input parameters of nodes. |
|
||||||
|
|
||||||
Attributes |
|
||||||
---------- |
|
||||||
RETURN_TYPES (`tuple`): |
|
||||||
The type of each element in the output tulple. |
|
||||||
FUNCTION (`str`): |
|
||||||
The name of the entry-point method which will return a tuple. For example, if `FUNCTION = "execute"` then it will run Example().execute() |
|
||||||
OUTPUT_NODE ([`bool`]): |
|
||||||
WIP |
|
||||||
CATEGORY (`str`): |
|
||||||
WIP |
|
||||||
execute(s) -> tuple || None: |
|
||||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`. |
|
||||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`. |
|
||||||
""" |
|
||||||
def __init__(self): |
|
||||||
pass |
|
||||||
|
|
||||||
@classmethod |
|
||||||
def INPUT_TYPES(s): |
|
||||||
""" |
|
||||||
Return a dictionary which contains config for all input fields. |
|
||||||
The type can be a string indicate a type or a list indicate selection. |
|
||||||
Prebuilt types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". |
|
||||||
Input in type "INT", "STRING" or "FLOAT" will be converted automatically from a string to the corresponse Python type before passing and have special config |
|
||||||
Argument: s (`None`): Useless ig |
|
||||||
Returns: `dict`: |
|
||||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` |
|
||||||
- Value input_fields (`dict`): Contains input fields config: |
|
||||||
* Key field_name (`string`): Name of a entry-point method's argument |
|
||||||
* Value field_config (`tuple`): |
|
||||||
+ First value is a string indicate the type of field or a list for selection. |
|
||||||
+ Secound value is a config for type "INT", "STRING" or "FLOAT". |
|
||||||
""" |
|
||||||
return { |
|
||||||
"required": { |
|
||||||
"string_field": ("STRING", { |
|
||||||
"multiline": True, #Allow the input to be multilined |
|
||||||
"default": "Hello World!" |
|
||||||
}), |
|
||||||
"int_field": ("INT", { |
|
||||||
"default": 0, |
|
||||||
"min": 0, #Minimum value |
|
||||||
"max": 4096, #Maximum value |
|
||||||
"step": 64 #Slider's step |
|
||||||
}), |
|
||||||
#Like INT |
|
||||||
"print_to_screen": (["Enable", "Disable"], {"default": "Enable"}) |
|
||||||
}, |
|
||||||
#"hidden": { |
|
||||||
# "prompt": "PROMPT", |
|
||||||
# "extra_pnginfo": "EXTRA_PNGINFO" |
|
||||||
#}, |
|
||||||
} |
|
||||||
|
|
||||||
RETURN_TYPES = ("STRING", "INT", "FLOAT", "STRING") |
|
||||||
FUNCTION = "test" |
|
||||||
|
|
||||||
#OUTPUT_NODE = True |
|
||||||
|
|
||||||
CATEGORY = "Example" |
|
||||||
|
|
||||||
def test(self, string_field, int_field, print_to_screen): |
|
||||||
rand_float = waste_cpu_resource() |
|
||||||
if print_to_screen == "Enable": |
|
||||||
print(f"""Your input contains: |
|
||||||
string_field aka input text: {string_field} |
|
||||||
int_field: {int_field} |
|
||||||
A random float number: {rand_float} |
|
||||||
""") |
|
||||||
return (string_field, int_field, rand_float, print_to_screen) |
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = { |
|
||||||
"ExampleFolder": ExampleFolder |
|
||||||
} |
|
||||||
""" |
|
||||||
NODE_CLASS_MAPPINGS (dict): A dictionary contains all nodes you want to export |
|
||||||
""" |
|
@ -1,4 +0,0 @@ |
|||||||
import torch |
|
||||||
def waste_cpu_resource(): |
|
||||||
x = torch.rand(1, 1e6, dtype=torch.float64).cpu() |
|
||||||
return x.numpy()[0, 1] |
|
Loading…
Reference in new issue