|
|
|
@ -174,6 +174,11 @@ class SDXL(supported_models_base.BASE):
|
|
|
|
|
self.sampling_settings["sigma_max"] = 80.0 |
|
|
|
|
self.sampling_settings["sigma_min"] = 0.002 |
|
|
|
|
return model_base.ModelType.EDM |
|
|
|
|
elif "edm_vpred.sigma_max" in state_dict: |
|
|
|
|
self.sampling_settings["sigma_max"] = float(state_dict["edm_vpred.sigma_max"].item()) |
|
|
|
|
if "edm_vpred.sigma_min" in state_dict: |
|
|
|
|
self.sampling_settings["sigma_min"] = float(state_dict["edm_vpred.sigma_min"].item()) |
|
|
|
|
return model_base.ModelType.V_PREDICTION_EDM |
|
|
|
|
elif "v_pred" in state_dict: |
|
|
|
|
return model_base.ModelType.V_PREDICTION |
|
|
|
|
else: |
|
|
|
@ -469,7 +474,7 @@ class SDXL_instructpix2pix(SDXL):
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
def get_model(self, state_dict, prefix="", device=None): |
|
|
|
|
return model_base.SDXL_instructpix2pix(self, device=device) |
|
|
|
|
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) |
|
|
|
|
|
|
|
|
|
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p] |
|
|
|
|
|
|
|
|
|