Browse Source

Fix ConditioningAverage.

pull/598/head
comfyanonymous 2 years ago
parent
commit
0aa667ed33
  1. 25
      nodes.py

25
nodes.py

@ -62,21 +62,30 @@ class ConditioningCombine:
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_from": ("CONDITIONING", ), "conditioning_to": ("CONDITIONING", ),
"conditioning_from_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1})
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
def addWeighted(self, conditioning_from, conditioning_to, conditioning_from_strength):
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
for i in range(min(len(conditioning_from),len(conditioning_to))):
t0 = conditioning_from[i]
t1 = conditioning_to[i]
tw = torch.mul(t0[0],(1-conditioning_from_strength)) + torch.mul(t1[0],conditioning_from_strength)
n = [tw, t0[1].copy()]
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )

Loading…
Cancel
Save