Browse Source

Add some more transformer hooks and move tomesd to comfy_extras.

Tomesd now uses q instead of x to decide which tokens to merge because
it seems to give better results.
pull/793/head
comfyanonymous 1 year ago
parent
commit
05676942b7
  1. 59
      comfy/ldm/modules/attention.py
  2. 5
      comfy/ldm/modules/diffusionmodules/openaimodel.py
  3. 27
      comfy/sd.py
  4. 33
      comfy_extras/nodes_tomesd.py
  5. 18
      nodes.py

59
comfy/ldm/modules/attention.py

@ -12,8 +12,6 @@ from .sub_quadratic_attention import efficient_dot_product_attention
from comfy import model_management from comfy import model_management
import comfy.ops import comfy.ops
from . import tomesd
if model_management.xformers_enabled(): if model_management.xformers_enabled():
import xformers import xformers
import xformers.ops import xformers.ops
@ -519,23 +517,39 @@ class BasicTransformerBlock(nn.Module):
self.norm2 = nn.LayerNorm(dim, dtype=dtype) self.norm2 = nn.LayerNorm(dim, dtype=dtype)
self.norm3 = nn.LayerNorm(dim, dtype=dtype) self.norm3 = nn.LayerNorm(dim, dtype=dtype)
self.checkpoint = checkpoint self.checkpoint = checkpoint
self.n_heads = n_heads
self.d_head = d_head
def forward(self, x, context=None, transformer_options={}): def forward(self, x, context=None, transformer_options={}):
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint) return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
def _forward(self, x, context=None, transformer_options={}): def _forward(self, x, context=None, transformer_options={}):
extra_options = {} extra_options = {}
block = None
block_index = 0
if "current_index" in transformer_options: if "current_index" in transformer_options:
extra_options["transformer_index"] = transformer_options["current_index"] extra_options["transformer_index"] = transformer_options["current_index"]
if "block_index" in transformer_options: if "block_index" in transformer_options:
extra_options["block_index"] = transformer_options["block_index"] block_index = transformer_options["block_index"]
extra_options["block_index"] = block_index
if "original_shape" in transformer_options: if "original_shape" in transformer_options:
extra_options["original_shape"] = transformer_options["original_shape"] extra_options["original_shape"] = transformer_options["original_shape"]
if "block" in transformer_options:
block = transformer_options["block"]
extra_options["block"] = block
if "patches" in transformer_options: if "patches" in transformer_options:
transformer_patches = transformer_options["patches"] transformer_patches = transformer_options["patches"]
else: else:
transformer_patches = {} transformer_patches = {}
extra_options["n_heads"] = self.n_heads
extra_options["dim_head"] = self.d_head
if "patches_replace" in transformer_options:
transformer_patches_replace = transformer_options["patches_replace"]
else:
transformer_patches_replace = {}
n = self.norm1(x) n = self.norm1(x)
if self.disable_self_attn: if self.disable_self_attn:
context_attn1 = context context_attn1 = context
@ -551,12 +565,29 @@ class BasicTransformerBlock(nn.Module):
for p in patch: for p in patch:
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
if "tomesd" in transformer_options: transformer_block = (block[0], block[1], block_index)
m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"]) attn1_replace_patch = transformer_patches_replace.get("attn1", {})
n = u(self.attn1(m(n), context=context_attn1, value=value_attn1)) block_attn1 = transformer_block
if block_attn1 not in attn1_replace_patch:
block_attn1 = block
if block_attn1 in attn1_replace_patch:
if context_attn1 is None:
context_attn1 = n
value_attn1 = n
n = self.attn1.to_q(n)
context_attn1 = self.attn1.to_k(context_attn1)
value_attn1 = self.attn1.to_v(value_attn1)
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
n = self.attn1.to_out(n)
else: else:
n = self.attn1(n, context=context_attn1, value=value_attn1) n = self.attn1(n, context=context_attn1, value=value_attn1)
if "attn1_output_patch" in transformer_patches:
patch = transformer_patches["attn1_output_patch"]
for p in patch:
n = p(n, extra_options)
x += n x += n
if "middle_patch" in transformer_patches: if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"] patch = transformer_patches["middle_patch"]
@ -573,7 +604,21 @@ class BasicTransformerBlock(nn.Module):
for p in patch: for p in patch:
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
n = self.attn2(n, context=context_attn2, value=value_attn2) attn2_replace_patch = transformer_patches_replace.get("attn2", {})
block_attn2 = transformer_block
if block_attn2 not in attn2_replace_patch:
block_attn2 = block
if block_attn2 in attn2_replace_patch:
if value_attn2 is None:
value_attn2 = context_attn2
n = self.attn2.to_q(n)
context_attn2 = self.attn2.to_k(context_attn2)
value_attn2 = self.attn2.to_v(value_attn2)
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
n = self.attn2.to_out(n)
else:
n = self.attn2(n, context=context_attn2, value=value_attn2)
if "attn2_output_patch" in transformer_patches: if "attn2_output_patch" in transformer_patches:
patch = transformer_patches["attn2_output_patch"] patch = transformer_patches["attn2_output_patch"]

5
comfy/ldm/modules/diffusionmodules/openaimodel.py

@ -830,17 +830,20 @@ class UNetModel(nn.Module):
h = x.type(self.dtype) h = x.type(self.dtype)
for id, module in enumerate(self.input_blocks): for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options) h = forward_timestep_embed(module, h, emb, context, transformer_options)
if control is not None and 'input' in control and len(control['input']) > 0: if control is not None and 'input' in control and len(control['input']) > 0:
ctrl = control['input'].pop() ctrl = control['input'].pop()
if ctrl is not None: if ctrl is not None:
h += ctrl h += ctrl
hs.append(h) hs.append(h)
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options) h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
if control is not None and 'middle' in control and len(control['middle']) > 0: if control is not None and 'middle' in control and len(control['middle']) > 0:
h += control['middle'].pop() h += control['middle'].pop()
for module in self.output_blocks: for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop() hsp = hs.pop()
if control is not None and 'output' in control and len(control['output']) > 0: if control is not None and 'output' in control and len(control['output']) > 0:
ctrl = control['output'].pop() ctrl = control['output'].pop()

27
comfy/sd.py

@ -315,9 +315,6 @@ class ModelPatcher:
n.model_keys = self.model_keys n.model_keys = self.model_keys
return n return n
def set_model_tomesd(self, ratio):
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
def set_model_sampler_cfg_function(self, sampler_cfg_function): def set_model_sampler_cfg_function(self, sampler_cfg_function):
if len(inspect.signature(sampler_cfg_function).parameters) == 3: if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
@ -330,12 +327,29 @@ class ModelPatcher:
to["patches"] = {} to["patches"] = {}
to["patches"][name] = to["patches"].get(name, []) + [patch] to["patches"][name] = to["patches"].get(name, []) + [patch]
def set_model_patch_replace(self, patch, name, block_name, number):
to = self.model_options["transformer_options"]
if "patches_replace" not in to:
to["patches_replace"] = {}
if name not in to["patches_replace"]:
to["patches_replace"][name] = {}
to["patches_replace"][name][(block_name, number)] = patch
def set_model_attn1_patch(self, patch): def set_model_attn1_patch(self, patch):
self.set_model_patch(patch, "attn1_patch") self.set_model_patch(patch, "attn1_patch")
def set_model_attn2_patch(self, patch): def set_model_attn2_patch(self, patch):
self.set_model_patch(patch, "attn2_patch") self.set_model_patch(patch, "attn2_patch")
def set_model_attn1_replace(self, patch, block_name, number):
self.set_model_patch_replace(patch, "attn1", block_name, number)
def set_model_attn2_replace(self, patch, block_name, number):
self.set_model_patch_replace(patch, "attn2", block_name, number)
def set_model_attn1_output_patch(self, patch):
self.set_model_patch(patch, "attn1_output_patch")
def set_model_attn2_output_patch(self, patch): def set_model_attn2_output_patch(self, patch):
self.set_model_patch(patch, "attn2_output_patch") self.set_model_patch(patch, "attn2_output_patch")
@ -348,6 +362,13 @@ class ModelPatcher:
for i in range(len(patch_list)): for i in range(len(patch_list)):
if hasattr(patch_list[i], "to"): if hasattr(patch_list[i], "to"):
patch_list[i] = patch_list[i].to(device) patch_list[i] = patch_list[i].to(device)
if "patches_replace" in to:
patches = to["patches_replace"]
for name in patches:
patch_list = patches[name]
for k in patch_list:
if hasattr(patch_list[k], "to"):
patch_list[k] = patch_list[k].to(device)
def model_dtype(self): def model_dtype(self):
return self.model.get_dtype() return self.model.get_dtype()

33
comfy/ldm/modules/tomesd.py → comfy_extras/nodes_tomesd.py

@ -142,3 +142,36 @@ def get_functions(x, ratio, original_shape):
nothing = lambda y: y nothing = lambda y: y
return nothing, nothing return nothing, nothing
class TomePatchModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, ratio):
self.u = None
def tomesd_m(q, k, v, extra_options):
#NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q
#however from my basic testing it seems that using q instead gives better results
m, self.u = get_functions(q, ratio, extra_options["original_shape"])
return m(q), k, v
def tomesd_u(n, extra_options):
return self.u(n)
m = model.clone()
m.set_model_attn1_patch(tomesd_m)
m.set_model_attn1_output_patch(tomesd_u)
return (m, )
NODE_CLASS_MAPPINGS = {
"TomePatchModel": TomePatchModel,
}

18
nodes.py

@ -437,22 +437,6 @@ class LoraLoader:
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip) model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
return (model_lora, clip_lora) return (model_lora, clip_lora)
class TomePatchModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, ratio):
m = model.clone()
m.set_model_tomesd(ratio)
return (m, )
class VAELoader: class VAELoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -1341,7 +1325,6 @@ NODE_CLASS_MAPPINGS = {
"CLIPVisionLoader": CLIPVisionLoader, "CLIPVisionLoader": CLIPVisionLoader,
"VAEDecodeTiled": VAEDecodeTiled, "VAEDecodeTiled": VAEDecodeTiled,
"VAEEncodeTiled": VAEEncodeTiled, "VAEEncodeTiled": VAEEncodeTiled,
"TomePatchModel": TomePatchModel,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader, "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
"GLIGENLoader": GLIGENLoader, "GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply, "GLIGENTextBoxApply": GLIGENTextBoxApply,
@ -1466,4 +1449,5 @@ def init_custom_nodes():
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_tomesd.py"))
load_custom_nodes() load_custom_nodes()

Loading…
Cancel
Save