The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

162 lines
4.8 KiB

# From https://github.com/Koushik0901/Swift-SRGAN/blob/master/swift-srgan/models.py
import torch
from torch import nn
class SeperableConv2d(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, stride=1, padding=1, bias=True
):
super(SeperableConv2d, self).__init__()
self.depthwise = nn.Conv2d(
in_channels,
in_channels,
kernel_size=kernel_size,
stride=stride,
groups=in_channels,
bias=bias,
padding=padding,
)
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias)
def forward(self, x):
return self.pointwise(self.depthwise(x))
class ConvBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels,
use_act=True,
use_bn=True,
discriminator=False,
**kwargs,
):
super(ConvBlock, self).__init__()
self.use_act = use_act
self.cnn = SeperableConv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
self.act = (
nn.LeakyReLU(0.2, inplace=True)
if discriminator
else nn.PReLU(num_parameters=out_channels)
)
def forward(self, x):
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))
class UpsampleBlock(nn.Module):
def __init__(self, in_channels, scale_factor):
super(UpsampleBlock, self).__init__()
self.conv = SeperableConv2d(
in_channels,
in_channels * scale_factor**2,
kernel_size=3,
stride=1,
padding=1,
)
self.ps = nn.PixelShuffle(
scale_factor
) # (in_channels * 4, H, W) -> (in_channels, H*2, W*2)
self.act = nn.PReLU(num_parameters=in_channels)
def forward(self, x):
return self.act(self.ps(self.conv(x)))
class ResidualBlock(nn.Module):
def __init__(self, in_channels):
super(ResidualBlock, self).__init__()
self.block1 = ConvBlock(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
self.block2 = ConvBlock(
in_channels, in_channels, kernel_size=3, stride=1, padding=1, use_act=False
)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
return out + x
class Generator(nn.Module):
"""Swift-SRGAN Generator
Args:
in_channels (int): number of input image channels.
num_channels (int): number of hidden channels.
num_blocks (int): number of residual blocks.
upscale_factor (int): factor to upscale the image [2x, 4x, 8x].
Returns:
torch.Tensor: super resolution image
"""
def __init__(
self,
state_dict,
):
super(Generator, self).__init__()
self.model_arch = "Swift-SRGAN"
self.sub_type = "SR"
self.state = state_dict
if "model" in self.state:
self.state = self.state["model"]
self.in_nc: int = self.state["initial.cnn.depthwise.weight"].shape[0]
self.out_nc: int = self.state["final_conv.pointwise.weight"].shape[0]
self.num_filters: int = self.state["initial.cnn.pointwise.weight"].shape[0]
self.num_blocks = len(
set([x.split(".")[1] for x in self.state.keys() if "residual" in x])
)
self.scale: int = 2 ** len(
set([x.split(".")[1] for x in self.state.keys() if "upsampler" in x])
)
in_channels = self.in_nc
num_channels = self.num_filters
num_blocks = self.num_blocks
upscale_factor = self.scale
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
self.initial = ConvBlock(
in_channels, num_channels, kernel_size=9, stride=1, padding=4, use_bn=False
)
self.residual = nn.Sequential(
*[ResidualBlock(num_channels) for _ in range(num_blocks)]
)
self.convblock = ConvBlock(
num_channels,
num_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False,
)
self.upsampler = nn.Sequential(
*[
UpsampleBlock(num_channels, scale_factor=2)
for _ in range(upscale_factor // 2)
]
)
self.final_conv = SeperableConv2d(
num_channels, in_channels, kernel_size=9, stride=1, padding=4
)
self.load_state_dict(self.state, strict=False)
def forward(self, x):
initial = self.initial(x)
x = self.residual(initial)
x = self.convblock(x) + initial
x = self.upsampler(x)
return (torch.tanh(self.final_conv(x)) + 1) / 2