You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
4.0 KiB
115 lines
4.0 KiB
2 years ago
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import math
|
||
|
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class SRVGGNetCompact(nn.Module):
|
||
|
"""A compact VGG-style network structure for super-resolution.
|
||
|
It is a compact network structure, which performs upsampling in the last layer and no convolution is
|
||
|
conducted on the HR feature space.
|
||
|
Args:
|
||
|
num_in_ch (int): Channel number of inputs. Default: 3.
|
||
|
num_out_ch (int): Channel number of outputs. Default: 3.
|
||
|
num_feat (int): Channel number of intermediate features. Default: 64.
|
||
|
num_conv (int): Number of convolution layers in the body network. Default: 16.
|
||
|
upscale (int): Upsampling factor. Default: 4.
|
||
|
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
state_dict,
|
||
|
act_type: str = "prelu",
|
||
|
):
|
||
|
super(SRVGGNetCompact, self).__init__()
|
||
|
self.model_arch = "SRVGG (RealESRGAN)"
|
||
|
self.sub_type = "SR"
|
||
|
|
||
|
self.act_type = act_type
|
||
|
|
||
|
self.state = state_dict
|
||
|
|
||
|
if "params" in self.state:
|
||
|
self.state = self.state["params"]
|
||
|
|
||
|
self.key_arr = list(self.state.keys())
|
||
|
|
||
|
self.in_nc = self.get_in_nc()
|
||
|
self.num_feat = self.get_num_feats()
|
||
|
self.num_conv = self.get_num_conv()
|
||
|
self.out_nc = self.in_nc # :(
|
||
|
self.pixelshuffle_shape = None # Defined in get_scale()
|
||
|
self.scale = self.get_scale()
|
||
|
|
||
|
self.supports_fp16 = True
|
||
|
self.supports_bfp16 = True
|
||
|
self.min_size_restriction = None
|
||
|
|
||
|
self.body = nn.ModuleList()
|
||
|
# the first conv
|
||
|
self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1))
|
||
|
# the first activation
|
||
|
if act_type == "relu":
|
||
|
activation = nn.ReLU(inplace=True)
|
||
|
elif act_type == "prelu":
|
||
|
activation = nn.PReLU(num_parameters=self.num_feat)
|
||
|
elif act_type == "leakyrelu":
|
||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||
|
self.body.append(activation) # type: ignore
|
||
|
|
||
|
# the body structure
|
||
|
for _ in range(self.num_conv):
|
||
|
self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1))
|
||
|
# activation
|
||
|
if act_type == "relu":
|
||
|
activation = nn.ReLU(inplace=True)
|
||
|
elif act_type == "prelu":
|
||
|
activation = nn.PReLU(num_parameters=self.num_feat)
|
||
|
elif act_type == "leakyrelu":
|
||
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
||
|
self.body.append(activation) # type: ignore
|
||
|
|
||
|
# the last conv
|
||
|
self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # type: ignore
|
||
|
# upsample
|
||
|
self.upsampler = nn.PixelShuffle(self.scale)
|
||
|
|
||
|
self.load_state_dict(self.state, strict=False)
|
||
|
|
||
|
def get_num_conv(self) -> int:
|
||
|
return (int(self.key_arr[-1].split(".")[1]) - 2) // 2
|
||
|
|
||
|
def get_num_feats(self) -> int:
|
||
|
return self.state[self.key_arr[0]].shape[0]
|
||
|
|
||
|
def get_in_nc(self) -> int:
|
||
|
return self.state[self.key_arr[0]].shape[1]
|
||
|
|
||
|
def get_scale(self) -> int:
|
||
|
self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0]
|
||
|
# Assume out_nc is the same as in_nc
|
||
|
# I cant think of a better way to do that
|
||
|
self.out_nc = self.in_nc
|
||
|
scale = math.sqrt(self.pixelshuffle_shape / self.out_nc)
|
||
|
if scale - int(scale) > 0:
|
||
|
print(
|
||
|
"out_nc is probably different than in_nc, scale calculation might be wrong"
|
||
|
)
|
||
|
scale = int(scale)
|
||
|
return scale
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
for i in range(0, len(self.body)):
|
||
|
out = self.body[i](out)
|
||
|
|
||
|
out = self.upsampler(out)
|
||
|
# add the nearest upsampled image, so that the network learns the residual
|
||
|
base = F.interpolate(x, scale_factor=self.scale, mode="nearest")
|
||
|
out += base
|
||
|
return out
|