The most powerful and modular stable diffusion GUI, api and backend with a graph/nodes interface.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

695 lines
21 KiB

# pylint: skip-file
"""
Model adapted from advimman's lama project: https://github.com/advimman/lama
"""
# Fast Fourier Convolution NeurIPS 2020
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import InterpolationMode, rotate
class LearnableSpatialTransformWrapper(nn.Module):
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
super().__init__()
self.impl = impl
self.angle = torch.rand(1) * angle_init_range
if train_angle:
self.angle = nn.Parameter(self.angle, requires_grad=True)
self.pad_coef = pad_coef
def forward(self, x):
if torch.is_tensor(x):
return self.inverse_transform(self.impl(self.transform(x)), x)
elif isinstance(x, tuple):
x_trans = tuple(self.transform(elem) for elem in x)
y_trans = self.impl(x_trans)
return tuple(
self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x)
)
else:
raise ValueError(f"Unexpected input type {type(x)}")
def transform(self, x):
height, width = x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode="reflect")
x_padded_rotated = rotate(
x_padded, self.angle.to(x_padded), InterpolationMode.BILINEAR, fill=0
)
return x_padded_rotated
def inverse_transform(self, y_padded_rotated, orig_x):
height, width = orig_x.shape[2:]
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
y_padded = rotate(
y_padded_rotated,
-self.angle.to(y_padded_rotated),
InterpolationMode.BILINEAR,
fill=0,
)
y_height, y_width = y_padded.shape[2:]
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
return y
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
res = x * y.expand_as(x)
return res
class FourierUnit(nn.Module):
def __init__(
self,
in_channels,
out_channels,
groups=1,
spatial_scale_factor=None,
spatial_scale_mode="bilinear",
spectral_pos_encoding=False,
use_se=False,
se_kwargs=None,
ffc3d=False,
fft_norm="ortho",
):
# bn_layer not used
super(FourierUnit, self).__init__()
self.groups = groups
self.conv_layer = torch.nn.Conv2d(
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
out_channels=out_channels * 2,
kernel_size=1,
stride=1,
padding=0,
groups=self.groups,
bias=False,
)
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
self.relu = torch.nn.ReLU(inplace=True)
# squeeze and excitation block
self.use_se = use_se
if use_se:
if se_kwargs is None:
se_kwargs = {}
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
self.spatial_scale_factor = spatial_scale_factor
self.spatial_scale_mode = spatial_scale_mode
self.spectral_pos_encoding = spectral_pos_encoding
self.ffc3d = ffc3d
self.fft_norm = fft_norm
def forward(self, x):
half_check = False
if x.type() == "torch.cuda.HalfTensor":
# half only works on gpu anyway
half_check = True
batch = x.shape[0]
if self.spatial_scale_factor is not None:
orig_size = x.shape[-2:]
x = F.interpolate(
x,
scale_factor=self.spatial_scale_factor,
mode=self.spatial_scale_mode,
align_corners=False,
)
# (batch, c, h, w/2+1, 2)
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
if half_check == True:
ffted = torch.fft.rfftn(
x.float(), dim=fft_dim, norm=self.fft_norm
) # .type(torch.cuda.HalfTensor)
else:
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
ffted = ffted.view(
(
batch,
-1,
)
+ ffted.size()[3:]
)
if self.spectral_pos_encoding:
height, width = ffted.shape[-2:]
coords_vert = (
torch.linspace(0, 1, height)[None, None, :, None]
.expand(batch, 1, height, width)
.to(ffted)
)
coords_hor = (
torch.linspace(0, 1, width)[None, None, None, :]
.expand(batch, 1, height, width)
.to(ffted)
)
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
if self.use_se:
ffted = self.se(ffted)
if half_check == True:
ffted = self.conv_layer(ffted.half()) # (batch, c*2, h, w/2+1)
else:
ffted = self.conv_layer(
ffted
) # .type(torch.cuda.FloatTensor) # (batch, c*2, h, w/2+1)
ffted = self.relu(self.bn(ffted))
# forcing to be always float
ffted = ffted.float()
ffted = (
ffted.view(
(
batch,
-1,
2,
)
+ ffted.size()[2:]
)
.permute(0, 1, 3, 4, 2)
.contiguous()
) # (batch,c, t, h, w/2+1, 2)
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
output = torch.fft.irfftn(
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm
)
if half_check == True:
output = output.half()
if self.spatial_scale_factor is not None:
output = F.interpolate(
output,
size=orig_size,
mode=self.spatial_scale_mode,
align_corners=False,
)
return output
class SpectralTransform(nn.Module):
def __init__(
self,
in_channels,
out_channels,
stride=1,
groups=1,
enable_lfu=True,
separable_fu=False,
**fu_kwargs,
):
# bn_layer not used
super(SpectralTransform, self).__init__()
self.enable_lfu = enable_lfu
if stride == 2:
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
else:
self.downsample = nn.Identity()
self.stride = stride
self.conv1 = nn.Sequential(
nn.Conv2d(
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False
),
nn.BatchNorm2d(out_channels // 2),
nn.ReLU(inplace=True),
)
fu_class = FourierUnit
self.fu = fu_class(out_channels // 2, out_channels // 2, groups, **fu_kwargs)
if self.enable_lfu:
self.lfu = fu_class(out_channels // 2, out_channels // 2, groups)
self.conv2 = torch.nn.Conv2d(
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False
)
def forward(self, x):
x = self.downsample(x)
x = self.conv1(x)
output = self.fu(x)
if self.enable_lfu:
_, c, h, _ = x.shape
split_no = 2
split_s = h // split_no
xs = torch.cat(
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1
).contiguous()
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous()
xs = self.lfu(xs)
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
else:
xs = 0
output = self.conv2(x + output + xs)
return output
class FFC(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
enable_lfu=True,
padding_type="reflect",
gated=False,
**spectral_kwargs,
):
super(FFC, self).__init__()
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
self.stride = stride
in_cg = int(in_channels * ratio_gin)
in_cl = in_channels - in_cg
out_cg = int(out_channels * ratio_gout)
out_cl = out_channels - out_cg
# groups_g = 1 if groups == 1 else int(groups * ratio_gout)
# groups_l = 1 if groups == 1 else groups - groups_g
self.ratio_gin = ratio_gin
self.ratio_gout = ratio_gout
self.global_in_num = in_cg
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
self.convl2l = module(
in_cl,
out_cl,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
self.convl2g = module(
in_cl,
out_cg,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
self.convg2l = module(
in_cg,
out_cl,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode=padding_type,
)
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
self.convg2g = module(
in_cg,
out_cg,
stride,
1 if groups == 1 else groups // 2,
enable_lfu,
**spectral_kwargs,
)
self.gated = gated
module = (
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
)
self.gate = module(in_channels, 2, 1)
def forward(self, x):
x_l, x_g = x if type(x) is tuple else (x, 0)
out_xl, out_xg = 0, 0
if self.gated:
total_input_parts = [x_l]
if torch.is_tensor(x_g):
total_input_parts.append(x_g)
total_input = torch.cat(total_input_parts, dim=1)
gates = torch.sigmoid(self.gate(total_input))
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
else:
g2l_gate, l2g_gate = 1, 1
if self.ratio_gout != 1:
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
if self.ratio_gout != 0:
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
return out_xl, out_xg
class FFC_BN_ACT(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False,
norm_layer=nn.BatchNorm2d,
activation_layer=nn.Identity,
padding_type="reflect",
enable_lfu=True,
**kwargs,
):
super(FFC_BN_ACT, self).__init__()
self.ffc = FFC(
in_channels,
out_channels,
kernel_size,
ratio_gin,
ratio_gout,
stride,
padding,
dilation,
groups,
bias,
enable_lfu,
padding_type=padding_type,
**kwargs,
)
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
global_channels = int(out_channels * ratio_gout)
self.bn_l = lnorm(out_channels - global_channels)
self.bn_g = gnorm(global_channels)
lact = nn.Identity if ratio_gout == 1 else activation_layer
gact = nn.Identity if ratio_gout == 0 else activation_layer
self.act_l = lact(inplace=True)
self.act_g = gact(inplace=True)
def forward(self, x):
x_l, x_g = self.ffc(x)
x_l = self.act_l(self.bn_l(x_l))
x_g = self.act_g(self.bn_g(x_g))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(
self,
dim,
padding_type,
norm_layer,
activation_layer=nn.ReLU,
dilation=1,
spatial_transform_kwargs=None,
inline=False,
**conv_kwargs,
):
super().__init__()
self.conv1 = FFC_BN_ACT(
dim,
dim,
kernel_size=3,
padding=dilation,
dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs,
)
self.conv2 = FFC_BN_ACT(
dim,
dim,
kernel_size=3,
padding=dilation,
dilation=dilation,
norm_layer=norm_layer,
activation_layer=activation_layer,
padding_type=padding_type,
**conv_kwargs,
)
if spatial_transform_kwargs is not None:
self.conv1 = LearnableSpatialTransformWrapper(
self.conv1, **spatial_transform_kwargs
)
self.conv2 = LearnableSpatialTransformWrapper(
self.conv2, **spatial_transform_kwargs
)
self.inline = inline
def forward(self, x):
if self.inline:
x_l, x_g = (
x[:, : -self.conv1.ffc.global_in_num],
x[:, -self.conv1.ffc.global_in_num :],
)
else:
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g))
x_l, x_g = self.conv2((x_l, x_g))
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
if self.inline:
out = torch.cat(out, dim=1)
return out
class ConcatTupleLayer(nn.Module):
def forward(self, x):
assert isinstance(x, tuple)
x_l, x_g = x
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
if not torch.is_tensor(x_g):
return x_l
return torch.cat(x, dim=1)
class FFCResNetGenerator(nn.Module):
def __init__(
self,
input_nc,
output_nc,
ngf=64,
n_downsampling=3,
n_blocks=18,
norm_layer=nn.BatchNorm2d,
padding_type="reflect",
activation_layer=nn.ReLU,
up_norm_layer=nn.BatchNorm2d,
up_activation=nn.ReLU(True),
init_conv_kwargs={},
downsample_conv_kwargs={},
resnet_conv_kwargs={},
spatial_transform_layers=None,
spatial_transform_kwargs={},
max_features=1024,
out_ffc=False,
out_ffc_kwargs={},
):
assert n_blocks >= 0
super().__init__()
"""
init_conv_kwargs = {'ratio_gin': 0, 'ratio_gout': 0, 'enable_lfu': False}
downsample_conv_kwargs = {'ratio_gin': '${generator.init_conv_kwargs.ratio_gout}', 'ratio_gout': '${generator.downsample_conv_kwargs.ratio_gin}', 'enable_lfu': False}
resnet_conv_kwargs = {'ratio_gin': 0.75, 'ratio_gout': '${generator.resnet_conv_kwargs.ratio_gin}', 'enable_lfu': False}
spatial_transform_kwargs = {}
out_ffc_kwargs = {}
"""
"""
print(input_nc, output_nc, ngf, n_downsampling, n_blocks, norm_layer,
padding_type, activation_layer,
up_norm_layer, up_activation,
spatial_transform_layers,
add_out_act, max_features, out_ffc, file=sys.stderr)
4 3 64 3 18 <class 'torch.nn.modules.batchnorm.BatchNorm2d'>
reflect <class 'torch.nn.modules.activation.ReLU'>
<class 'torch.nn.modules.batchnorm.BatchNorm2d'>
ReLU(inplace=True)
None sigmoid 1024 False
"""
init_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False}
downsample_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False}
resnet_conv_kwargs = {
"ratio_gin": 0.75,
"ratio_gout": 0.75,
"enable_lfu": False,
}
spatial_transform_kwargs = {}
out_ffc_kwargs = {}
model = [
nn.ReflectionPad2d(3),
FFC_BN_ACT(
input_nc,
ngf,
kernel_size=7,
padding=0,
norm_layer=norm_layer,
activation_layer=activation_layer,
**init_conv_kwargs,
),
]
### downsample
for i in range(n_downsampling):
mult = 2**i
if i == n_downsampling - 1:
cur_conv_kwargs = dict(downsample_conv_kwargs)
cur_conv_kwargs["ratio_gout"] = resnet_conv_kwargs.get("ratio_gin", 0)
else:
cur_conv_kwargs = downsample_conv_kwargs
model += [
FFC_BN_ACT(
min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3,
stride=2,
padding=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
**cur_conv_kwargs,
)
]
mult = 2**n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
### resnet blocks
for i in range(n_blocks):
cur_resblock = FFCResnetBlock(
feats_num_bottleneck,
padding_type=padding_type,
activation_layer=activation_layer,
norm_layer=norm_layer,
**resnet_conv_kwargs,
)
if spatial_transform_layers is not None and i in spatial_transform_layers:
cur_resblock = LearnableSpatialTransformWrapper(
cur_resblock, **spatial_transform_kwargs
)
model += [cur_resblock]
model += [ConcatTupleLayer()]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [
nn.ConvTranspose2d(
min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=3,
stride=2,
padding=1,
output_padding=1,
),
up_norm_layer(min(max_features, int(ngf * mult / 2))),
up_activation,
]
if out_ffc:
model += [
FFCResnetBlock(
ngf,
padding_type=padding_type,
activation_layer=activation_layer,
norm_layer=norm_layer,
inline=True,
**out_ffc_kwargs,
)
]
model += [
nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
]
model.append(nn.Sigmoid())
self.model = nn.Sequential(*model)
def forward(self, image, mask):
return self.model(torch.cat([image, mask], dim=1))
class LaMa(nn.Module):
def __init__(self, state_dict) -> None:
super(LaMa, self).__init__()
self.model_arch = "LaMa"
self.sub_type = "Inpaint"
self.in_nc = 4
self.out_nc = 3
self.scale = 1
self.min_size = None
self.pad_mod = 8
self.pad_to_square = False
self.model = FFCResNetGenerator(self.in_nc, self.out_nc)
self.state = {
k.replace("generator.model", "model.model"): v
for k, v in state_dict.items()
}
self.supports_fp16 = False
self.support_bf16 = True
self.load_state_dict(self.state, strict=False)
def forward(self, img, mask):
masked_img = img * (1 - mask)
inpainted_mask = mask * self.model.forward(masked_img, mask)
result = inpainted_mask + (1 - mask) * img
return result