|
|
|
import torch
|
|
|
|
import math
|
|
|
|
|
|
|
|
def load_torch_file(ckpt, safe_load=False):
|
|
|
|
if ckpt.lower().endswith(".safetensors"):
|
|
|
|
import safetensors.torch
|
|
|
|
sd = safetensors.torch.load_file(ckpt, device="cpu")
|
|
|
|
else:
|
|
|
|
if safe_load:
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu", weights_only=True)
|
|
|
|
else:
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
if "global_step" in pl_sd:
|
|
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
|
|
if "state_dict" in pl_sd:
|
|
|
|
sd = pl_sd["state_dict"]
|
|
|
|
else:
|
|
|
|
sd = pl_sd
|
|
|
|
return sd
|
|
|
|
|
|
|
|
def transformers_convert(sd, prefix_from, prefix_to, number):
|
|
|
|
resblock_to_replace = {
|
|
|
|
"ln_1": "layer_norm1",
|
|
|
|
"ln_2": "layer_norm2",
|
|
|
|
"mlp.c_fc": "mlp.fc1",
|
|
|
|
"mlp.c_proj": "mlp.fc2",
|
|
|
|
"attn.out_proj": "self_attn.out_proj",
|
|
|
|
}
|
|
|
|
|
|
|
|
for resblock in range(number):
|
|
|
|
for x in resblock_to_replace:
|
|
|
|
for y in ["weight", "bias"]:
|
|
|
|
k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
|
|
|
|
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
|
|
|
|
if k in sd:
|
|
|
|
sd[k_to] = sd.pop(k)
|
|
|
|
|
|
|
|
for y in ["weight", "bias"]:
|
|
|
|
k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
|
|
|
|
if k_from in sd:
|
|
|
|
weights = sd.pop(k_from)
|
|
|
|
shape_from = weights.shape[0] // 3
|
|
|
|
for x in range(3):
|
|
|
|
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
|
|
|
|
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
|
|
|
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
|
|
|
return sd
|
|
|
|
|
|
|
|
#slow and inefficient, should be optimized
|
|
|
|
def bislerp(samples, width, height):
|
|
|
|
shape = list(samples.shape)
|
|
|
|
width_scale = (shape[3]) / (width )
|
|
|
|
height_scale = (shape[2]) / (height )
|
|
|
|
|
|
|
|
shape[3] = width
|
|
|
|
shape[2] = height
|
|
|
|
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device)
|
|
|
|
|
|
|
|
def algorithm(in1, in2, t):
|
|
|
|
dims = in1.shape
|
|
|
|
val = t
|
|
|
|
|
|
|
|
#flatten to batches
|
|
|
|
low = in1.reshape(dims[0], -1)
|
|
|
|
high = in2.reshape(dims[0], -1)
|
|
|
|
|
|
|
|
low_weight = torch.norm(low, dim=1, keepdim=True)
|
|
|
|
low_weight[low_weight == 0] = 0.0000000001
|
|
|
|
low_norm = low/low_weight
|
|
|
|
high_weight = torch.norm(high, dim=1, keepdim=True)
|
|
|
|
high_weight[high_weight == 0] = 0.0000000001
|
|
|
|
high_norm = high/high_weight
|
|
|
|
|
|
|
|
dot_prod = (low_norm*high_norm).sum(1)
|
|
|
|
dot_prod[dot_prod > 0.9995] = 0.9995
|
|
|
|
dot_prod[dot_prod < -0.9995] = -0.9995
|
|
|
|
omega = torch.acos(dot_prod)
|
|
|
|
so = torch.sin(omega)
|
|
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low_norm + (torch.sin(val*omega)/so).unsqueeze(1) * high_norm
|
|
|
|
res *= (low_weight * (1.0-val) + high_weight * val)
|
|
|
|
return res.reshape(dims)
|
|
|
|
|
|
|
|
for x_dest in range(shape[3]):
|
|
|
|
for y_dest in range(shape[2]):
|
|
|
|
y = (y_dest + 0.5) * height_scale - 0.5
|
|
|
|
x = (x_dest + 0.5) * width_scale - 0.5
|
|
|
|
|
|
|
|
x1 = max(math.floor(x), 0)
|
|
|
|
x2 = min(x1 + 1, samples.shape[3] - 1)
|
|
|
|
wx = x - math.floor(x)
|
|
|
|
|
|
|
|
y1 = max(math.floor(y), 0)
|
|
|
|
y2 = min(y1 + 1, samples.shape[2] - 1)
|
|
|
|
wy = y - math.floor(y)
|
|
|
|
|
|
|
|
in1 = samples[:,:,y1,x1]
|
|
|
|
in2 = samples[:,:,y1,x2]
|
|
|
|
in3 = samples[:,:,y2,x1]
|
|
|
|
in4 = samples[:,:,y2,x2]
|
|
|
|
|
|
|
|
if (x1 == x2) and (y1 == y2):
|
|
|
|
out_value = in1
|
|
|
|
elif (x1 == x2):
|
|
|
|
out_value = algorithm(in1, in3, wy)
|
|
|
|
elif (y1 == y2):
|
|
|
|
out_value = algorithm(in1, in2, wx)
|
|
|
|
else:
|
|
|
|
o1 = algorithm(in1, in2, wx)
|
|
|
|
o2 = algorithm(in3, in4, wx)
|
|
|
|
out_value = algorithm(o1, o2, wy)
|
|
|
|
|
|
|
|
out1[:,:,y_dest,x_dest] = out_value
|
|
|
|
return out1
|
|
|
|
|
|
|
|
def common_upscale(samples, width, height, upscale_method, crop):
|
|
|
|
if crop == "center":
|
|
|
|
old_width = samples.shape[3]
|
|
|
|
old_height = samples.shape[2]
|
|
|
|
old_aspect = old_width / old_height
|
|
|
|
new_aspect = width / height
|
|
|
|
x = 0
|
|
|
|
y = 0
|
|
|
|
if old_aspect > new_aspect:
|
|
|
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
|
|
|
elif old_aspect < new_aspect:
|
|
|
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
|
|
|
s = samples[:,:,y:old_height-y,x:old_width-x]
|
|
|
|
else:
|
|
|
|
s = samples
|
|
|
|
|
|
|
|
if upscale_method == "bislerp":
|
|
|
|
return bislerp(s, width, height)
|
|
|
|
else:
|
|
|
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
|
|
|
|
|
|
|
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
|
|
|
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
|
|
|
|
output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
|
|
|
|
for b in range(samples.shape[0]):
|
|
|
|
s = samples[b:b+1]
|
|
|
|
out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
|
|
|
|
out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
|
|
|
|
for y in range(0, s.shape[2], tile_y - overlap):
|
|
|
|
for x in range(0, s.shape[3], tile_x - overlap):
|
|
|
|
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
|
|
|
|
|
|
|
|
ps = function(s_in).cpu()
|
|
|
|
mask = torch.ones_like(ps)
|
|
|
|
feather = round(overlap * upscale_amount)
|
|
|
|
for t in range(feather):
|
|
|
|
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
|
|
|
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
|
|
|
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
|
|
|
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
|
|
|
out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
|
|
|
|
out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
|
|
|
|
if pbar is not None:
|
|
|
|
pbar.update(1)
|
|
|
|
|
|
|
|
output[b:b+1] = out/out_div
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
PROGRESS_BAR_HOOK = None
|
|
|
|
def set_progress_bar_global_hook(function):
|
|
|
|
global PROGRESS_BAR_HOOK
|
|
|
|
PROGRESS_BAR_HOOK = function
|
|
|
|
|
|
|
|
class ProgressBar:
|
|
|
|
def __init__(self, total):
|
|
|
|
global PROGRESS_BAR_HOOK
|
|
|
|
self.total = total
|
|
|
|
self.current = 0
|
|
|
|
self.hook = PROGRESS_BAR_HOOK
|
|
|
|
|
|
|
|
def update_absolute(self, value, total=None):
|
|
|
|
if total is not None:
|
|
|
|
self.total = total
|
|
|
|
if value > self.total:
|
|
|
|
value = self.total
|
|
|
|
self.current = value
|
|
|
|
if self.hook is not None:
|
|
|
|
self.hook(self.current, self.total)
|
|
|
|
|
|
|
|
def update(self, value):
|
|
|
|
self.update_absolute(self.current + value)
|